Abstract
Excess fluoride intake could induce apoptosis in the cells. As an essential micronutrient and cytoprotectant, zinc is involved in many types of apoptosis. Here, we studied the effects of zinc and ZIP1 on fluoride-induced apoptosis in mouse MC3T3-E1 cells and examined the underlying molecular mechanisms. Our study found that fluoride not only inhibited cell proliferation and increased the intracellular reactive oxygen species (ROS) but also induced cell apoptosis. Whereas pretreatment with zinc significantly attenuated fluoride-induced ROS production and partly protected cells against fluoride-induced apoptosis through MAPK/ERK signaling pathway. Our study also found that fluoride upregulated the expression of ZIP1 in a time-dependent manner. Moreover, overexpression of ZIP1 also inhibited fluoride-induced apoptosis by activation of PI3K/Akt pathway. This cytoprotective effect of zinc and ZIP1 may be new factors that affect the physiological activity of fluoride and need study further.
-
-
Zinc protection from fluoride-induced testicular injury in the bank vole (Clethrionomys glareolus)
Previous work has shown that a high fluoride intake in rodents leads to histopathological changes in the germinal epithelium of testes that is associated with zinc deficiency. The purpose of this study was to determine whether supplemental dietary Zn would protect against testicular toxicity induced by fluoride in a small
-
The effects and underlying mechanism of excessive iodide on excessive fluoride-induced thyroid cytotoxicity
In many regions, excessive fluoride and excessive iodide coexist in groundwater, which may lead to biphasic hazards to human thyroid. To explore fluoride-induced thyroid cytotoxicity and the mechanism underlying the effects of excessive iodide on fluoride-induced cytotoxicity, a thyroid cell line (Nthy-ori 3-1) was exposed to excessive fluoride and/or excessive
-
Analysis of the roles of dietary protein and calcium in fluoride-induced changes in T-lymphocyte subsets in rat
The roles of dietary protein (Pr) and calcium (Ca) levels on the changes in T-lymphocyte subsets induced by excessive fluoride (F) intake were assessed using rats that were malnourished for 120 days as a model. The CD4+ and CD8+ T-lymphocytes in the spleen tissue were determined by flow cytometry and
-
Effect of maternal exposure of fluoride on biometals and oxidative stress parameters in developing CNS of rat.
Excessive intake of essential elements agitates elemental homeostasis resulting in their heterogeneous distribution. Distraction of these elements in central nervous system (CNS) have been demonstrated in many neurological disorders, which are vital in generating free radicals, causing oxidative stress, and contributing to neuronal maladies. The developing CNS is highly vulnerable
-
Effects of NaF on the expression of intracellular Ca2+ fluxes and apoptosis and the antagonism of taurine in murine neuron
Sodium fluoride (NaF) has been shown to be cytotoxic and produces inflammatory responses in humans. However, the cellular mechanisms underlying the neurotoxicity of fluoride are unclear. The present study aims to define a possible mechanism of NaF-induced neurotoxicity with respect to apoptosis and intracellular Ca(2+) fluxes. Meanwhile, the cytoprotective role
Related Studies :
-
-
-
Fluoride Exposure Increases Metabolic Requirement for Magnesium
Fluoride's toxicity is significantly enhanced in the presence of nutritional deficiencies. Similarly, fluoride exposure increases the body's requirement for certain nutrients. An individual with a high intake of fluoride, for example, will need a proportional increase in calcium to avoid the mineralization defects (e.g., osteomalacia) that fluoride causes to bone
-
Fluoride Exposure Increases Metabolic Requirement for Calcium & Vitamin D
It is well known that individuals with nutrient deficiencies are more susceptible to fluoride toxicity, including fluoride's bone effects. As discussed in the following studies, fluoride increases the skeleton's need for calcium (and vitamin D) by increasing the amount of unmineralized tissue (osteoid) in the bone. When insufficient calcium and
-
Fluoride Is Not an Essential Nutrient
In the 1950s, dentists believed that fluoride was a “nutrient.” A nutrient is a vitamin or mineral that is necessary for good health. Dentists believed that fluoride ingestion during childhood was necessary for strong, healthy teeth. A “fluoride deficiency” was thus believed to cause cavities, just like a deficiency of calcium can
-
Fluoride & Oxidative Stress
A vast body of research demonstrates that fluoride exposure increases oxidative stress. Based on this research, it is believed that fluoride-induced oxidative stress is a key mechanism underlying the various toxic effects associated with fluoride exposure. It is also well established that fluoride's toxic effects can be ameliorated by exposure
-
Nutrient Deficiencies Enhance Fluoride Toxicity
It has been known since the 1930s that poor nutrition enhances the toxicity of fluoride. As discussed below, nutrient deficiencies have been specifically linked to increased susceptibility to fluoride-induced tooth damage (dental fluorosis), bone damage (osteomalacia), neurotoxicity (reduced intelligence), and mutagenicity. The nutrients of primary importance appear to be calcium,
Related FAN Content :
-