Abstract
In many regions, excessive fluoride and excessive iodide coexist in groundwater, which may lead to biphasic hazards to human thyroid. To explore fluoride-induced thyroid cytotoxicity and the mechanism underlying the effects of excessive iodide on fluoride-induced cytotoxicity, a thyroid cell line (Nthy-ori 3-1) was exposed to excessive fluoride and/or excessive iodide. Cell viability, lactate dehydrogenase (LDH) leakage, reactive oxygen species (ROS) formation, apoptosis, and the expression levels of inositol-requiring enzyme 1 (IRE1) pathway-related molecules were detected. Fluoride and/or iodide decreased cell viability and increased LDH leakage and apoptosis. ROS, the expression levels of glucose-regulated protein 78 (GRP78), IRE1, C/EBP homologous protein (CHOP), and spliced X-box-binding protein-1 (sXBP-1) were enhanced by fluoride or the combination of the two elements. Collectively, excessive fluoride and excessive iodide have detrimental influences on human thyroid cells. Furthermore, an antagonistic interaction between fluoride and excessive iodide exists, and cytotoxicity may be related to IRE1 pathway-induced apoptosis.
-
-
Neuroprotective effect of ascorbic acid and ginkgo biloba against fluoride caused neurotoxicity
Excessive consumption of fluoride through drinking water or other sources lead to skeletal and dental fluorosis. According to the world health organization 23 nations are facing the problem of fluorosis. In the recent past researchers describe the non-skeletal fluorosis where soft tissues and major organs are the victims of fluoride
-
Selenium Exerts Protective Effects Against Fluoride-Induced Apoptosis and Oxidative Stress and Altered the Expression of Bcl-2/Caspase Family.
Fluoride is widely distributed in nature, and at high concentrations, it targets the kidney and especially proximal tubule epithelial cells. Selenium is a typical trace element beneficial to humans, and the role of selenium in the prevention and treatment of fluoride-induced organ damage is an important research topic. The purpose
-
Protective effects of vitamin C against fluoride toxicity.
Fluorine is a highly toxic substance that is widely distributed with drinking water and nutrients. While fluorine is not free in nature, it can form compounds with almost all metals and nonmetals except oxygen and inert gases. Fluorine is found in the environment in water, soil, air, nutrients, and vegetation
-
Selenium increases expression of HSP70 and antioxidant enzymes to lessen oxidative damage in Fincoal-type fluorosis
Fincoal type fluorosis has only been reported from China, but its pathogenesis is unclear. Many people believe that fluorosis is associated with oxidative stress. Oxidative stress can be reduced at higher selenium (Se) level. Heat shock protein (HSP70) is the most conserved and induced against different stressors. The aim of
-
Fluoride toxicity in the male reproductive system
This review covers the current scientific understanding of the links between environmental exposure to fluoride (F) and its known or potential effects on human male fertility. The most important consequences of these F exposures are: changes in the structure and functional behavior of spermatozoa, disruption of spermatogenesis, and disturbances of
Related Studies :
-
-
-
Fluoride, Water Hardness, and Endemic Goitre
Variations in goitre prevalence were found to correlate closely with the fluoride content (p=0-74; P<0-01) and with the hardness (p=0.77; P<0-01) of the water in each village. The effects of fluoride and water hardness seem to be independent.
-
Fluoride & Oxidative Stress
A vast body of research demonstrates that fluoride exposure increases oxidative stress. Based on this research, it is believed that fluoride-induced oxidative stress is a key mechanism underlying the various toxic effects associated with fluoride exposure. It is also well established that fluoride's toxic effects can be ameliorated by exposure
-
Nutrient Deficiencies Enhance Fluoride Toxicity
It has been known since the 1930s that poor nutrition enhances the toxicity of fluoride. As discussed below, nutrient deficiencies have been specifically linked to increased susceptibility to fluoride-induced tooth damage (dental fluorosis), bone damage (osteomalacia), neurotoxicity (reduced intelligence), and mutagenicity. The nutrients of primary importance appear to be calcium,
-
The Relationship Between Fluoride Exposure & Goitre in South Africa
As a general rule simple goitre, irrespective of the cause, can be very, or fairly, satisfactorily combated by an adequate increase in man's daily iodine intake, except when the enlargement of the gland is due to the ingestion of excessive amounts of fluorine. The only correct solution to fluorine-induced endemic goitre is the removal of this element from the drinking water.
-
Fluorine in the Aetiology of Endemic Goitre
The distribution of endemic goitre in the Punjab and in England is related to the geological distribution of fluorine and to the distribution of human dental fluorosis (mottled enamel). Inquiry showed the presence of dental fluorosis among school-children in two areas of Somerset where two previous observers had recorded a high incidence of goitre, and the absence of dental fluorosis in an adjoining area selected as control where endemic goitre was absent.
Related FAN Content :
-