Abstract
Fluoride, a well-established environmental carcinogen, has been found to cause various neurodegenerative diseases in human. Sub-acute exposure to fluoride at a dose of 20mg/kgb.w./day for 30 days caused significant alteration in pro-oxidant/anti-oxidant status of brain tissue as reflected by perturbation of reduced glutathione content, increased lipid peroxidation, protein carbonylation, nitric oxide and free hydroxyl radical production and decreased activities of antioxidant enzymes. Decreased proteolytic and transaminase enzymes’ activities, protein and nucleic acid contents and associated DNA damage were observed in the brain of fluoride intoxicated rats. The neurotransmitters dopamine (DA), norepinephrine (NE) and serotonin level was also significantly altered after fluoride exposure. Protective effect of resveratrol on fluoride-induced metabolic and oxidative dysfunctions was evaluated. Resveratrol was found to inhibit changes in metabolic activities restoring antioxidant status, biogenic amine level and structural organization of the brain. Our findings indicated that resveratrol imparted antioxidative role in ameliorating fluoride-induced metabolic and oxidative stress in different regions of the brain.
-
-
Melatonin ameliorates fluoride induced neurotoxicity in young rats: an in vivo evidence
Objective: Developing brain is highly vulnerable to environmental toxins. Recently, fluoride was declared as a developmental neurotoxin and heralded search for natural neuroprotectant. In the present study, we have evaluated the neuroprotective and anti-inflammatory efficacy of melatonin in fluoride induced neurotoxicity. Methods: Animals were divided into following groups; the first group
-
Relationship between intracellular Ca²+ and ROS during fluoride-induced injury in SH-SY5Y cells.
The mechanisms underlying the neurotoxicology of endemic fluorosis still remain obscure. To explore lactate dehydrogenase (LDH) leakage, intracellular Ca²? concentration ([Ca²?]i ) and reactive oxygen species (ROS) production induced by fluoride, human neuroblastoma (SH-SY5Y) cells were incubated with sodium fluoride (NaF, 20, 40, 80 mg/L) for 24 h, with 40
-
Quercetin treatment against NaF induced oxidative stress related neuronal and learning changes in developing rats
Previous behavioural studies shows that excessive exposure of fluoride caused diminished intelligent quotient in children compared to the normal children (Wang et al., 2004) and sodium fluoride intoxicated rat exerted loss of memory and learning disability (Yaning et al., 2005). In the present study postnatal rats aged day 21 and
-
Effects of fluoride and ethanol administration on lipid peroxidation systems in rat brain.
Exposure to fluoride and excessive ethanol consumption has been identified as a serious public health problem in many parts of the world, including India. Thus, the effect of co-exposure to fluoride and ethanol for 3-6 weeks was studied on lipid peroxidation (LPO) and oxidative stress related parameters in the rat
-
Sirt3-mediated mitochondrial dysfunction is involved in fluoride-induced cognitive deficits.
Highlights Fluoride induces cognitive deficits in mice. Fluoride exposure results in neural/synaptic injury in the hippocampus of mice. Mitochondrial dysfunction contributes to neural/synaptic alternations. Inhibition of Sirt3 is involved in the fluoride-evoked mitochondrial abnormalities. Abstract Excessive fluoride is capable of inducing cognitive deficits, but the mechanisms remain elusive. This study aimed
Related Studies :
-
-
-
NRC (2006): Fluoride's Neurotoxicity and Neurobehavioral Effects
The NRC's analysis on fluoride and the brain.
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
-
Fluoride & Oxidative Stress
A vast body of research demonstrates that fluoride exposure increases oxidative stress. Based on this research, it is believed that fluoride-induced oxidative stress is a key mechanism underlying the various toxic effects associated with fluoride exposure. It is also well established that fluoride's toxic effects can be ameliorated by exposure
-
Fluoride content in tea and its relationship with tea quality.
J Agric Food Chem. 2004 Jul 14;52(14):4472-6. Fluoride content in tea and its relationship with tea quality. Lu Y, Guo WF, Yang XQ. Department of Tea Science, Zhejiang University, 268 Kaixuan Road, Hangzhou 310027, People's Republic of China. Abstract: The tea plant is known as a fluorine accumulator. Fluoride (F) content in fresh leaves collected
-
Fluoride's Direct Effects on Brain: Animal Studies
The possibility that fluoride ingestion may impair intelligence and other indices of neurological function is supported by a vast body of animal research, including over 40 studies that have investigated fluoride's effects on brain quality in animals. As discussed by the National Research Council, the studies have consistently demonstrated that fluoride, at widely varying concentrations, is toxic to the brain.
Related FAN Content :
-