Fluoride Action Network


Endocytosis and phagocytosis are important physiologic activities occurring during ameloblast differentiation. We have previously found that excess fluoride inhibited ameloblasts endocytotic functions. Here, we hypothesized that increasing amounts of fluoride may affect ameloblast phagocytotic function during their differentiation. Using cell culture, we first induced maturation of the mouse ameloblast-like LS8 cells by treatment with exogenous retinoic acid (RA) and dexamethasone (DEX). We measured their phagocytotic activity by fluorescent microscopy using a live cell visualization station. We found that ameloblast-like LS8 cells matured with RA/DEX treatment and the increasing amounts of fluoride demonstrated the up-regulated expression of the phagocytotic marker proteins, LAMP1 and CD68. A connection between phagocytosis and apoptosis was confirmed by the increased number of phagocytotic vacuole-like structures and the heterochromatin margination phenomenon observed in the RA/DEX with NaF treatment group. The increase in albumin uptake by ameloblasts was confirmed using whole organ culture of incisor tooth germs. Here, in fluoride treated tooth germs, mature canonical ameloblasts showed greater amounts of albumin uptake, which was accompanied by decreased expression of the anti-apoptosis marker, Bcl-2 along with up-regulated expression of CD68. From these observations, we inferred that high doses of fluoride may cause apoptosis by increasing the phagocytosis of protein particles in mature-stage ameloblasts and loss of Bcl-2 signals might be involved in this process.