Abstract
Both fluoride and lead can cross the blood-brain barrier and produce toxic effects on the central neural system, resulting in low learning and memory abilities, especially in children. In order to identify the proteomic pattern in the cortex of young animals, from the beginning of fertilization to the age of postnatal day 56, pregnant female mice and pups were administrated with 150 mg sodium fluoride/L and/or 300 mg lead acetate/L in their drinking water. Two-dimensional electrophoresis (2-DE) combined with mass spectrometry (MS) was applied to identify differently expressed protein spots. Results showed that there were eight proteins in the cortex that significantly changed, whose biological functions were involved in (1) energy metabolism (Ndufs1, Atp5h, Atp6v1b2), (2) cytoskeleton (Spna2, Tuba1a, Tubb2a), (3) glycation repair (Hdhd2), and (4) cell stress response (Hspa8). Based on the previous and current studies, ATPase, Spna2, and Hspa8 were shared by fluoride and lead both as common target molecules.
-
-
Confirmation of and explanations for elevated blood lead and other disorders in children exposed to water disinfection and fluoridation chemicals
Silicofluorides (SiFs), fluosilicic acid (FSA) and sodium fluosilicate (NaFSA), are used to fluoridate over 90% of US fluoridated municipal water supplies. Living in communities with silicofluoride treated water (SiFW) is associated with two neurotoxic effects: (1) Prevalence of children with elevated blood lead (PbB>10microg/dL) is about double that in non-fluoridated
-
Screening of Human Proteins for Fluoride and Aluminum Binding.
Previous studies showed that prolonged exposure to fluoride (F-) and aluminum (Al3+) ions is associated with numerous diseases including neurological disorders. They don't have any known biological function. But they can bind with proteins that interact with ions similar to them. Such unwanted interactions affect the normal biological function of
-
Fisetin prevents fluoride- and dexamethasone-induced oxidative damage in osteoblast and hippocampal cells
Fluoride intoxication and dexamethasone treatment produce deleterious effects in bone and brain. The aim of this study was to evaluate the effect of fluoride (F) and dexamethasone (Dex) co-exposure on oxidative stress and apoptosis in osteoblast-like MC3T3-E1 and hippocampal HT22 cell lines. Co-exposure to F and Dex resulted in a
-
Proteomic analysis of hippocampus in offspring male mice exposed to fluoride and lead
Fluoride and lead are two common pollutants in the environment. Previous investigations have found that high fluoride exposure can increase the lead burden. In this experiment, in order to study on the molecular mechanisms of central neural system injury induced by the above two elements, differently expressed protein spots in
-
Black berry juice attenuates neurological disorders and oxidative stress associated with concurrent exposure of aluminum and fluoride in male rats
The objective of this study was to assess the protective effect of black berry juice (BBJ) on the neurological disorders and oxidative stress induced by co-exposure to ALCL3 and NaF in male albino rats. Administration of either AlCl3 (200?mg/kg bw) or NaF (10?mg/kg bw) or both of them caused a
Related Studies :
-
-
-
Fluoride: Developmental Neurotoxicity.
Developmental Neurotoxicity There has been a tremendous amount of research done on the association of exposure to fluoride with developmental neurotoxicity. There are over 60 studies reporting reduced IQ in children and several on the impaired learning/memory in animals. And there are studies which link fluoride to Attention Deficit Hyperactivity Disorder. Teaching
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
-
NRC (2006): Fluoride's Neurotoxicity and Neurobehavioral Effects
The NRC's analysis on fluoride and the brain.
-
Fluoride & IQ: 76 Studies
• As of July 18, 2022, a total of 85 human studies have investigated the relationship between fluoride and human intelligence. • Of these investigations, 76 studies have reported that elevated fluoride exposure is associated with reduced IQ in humans. • The studies which reported an association of reduced IQ with exposure
-
Fluoride's Direct Effects on Brain: Animal Studies
The possibility that fluoride ingestion may impair intelligence and other indices of neurological function is supported by a vast body of animal research, including over 40 studies that have investigated fluoride's effects on brain quality in animals. As discussed by the National Research Council, the studies have consistently demonstrated that fluoride, at widely varying concentrations, is toxic to the brain.
Related FAN Content :
-