Abstract
Both fluoride and lead can cross the blood-brain barrier and produce toxic effects on the central neural system, resulting in low learning and memory abilities, especially in children. In order to identify the proteomic pattern in the cortex of young animals, from the beginning of fertilization to the age of postnatal day 56, pregnant female mice and pups were administrated with 150 mg sodium fluoride/L and/or 300 mg lead acetate/L in their drinking water. Two-dimensional electrophoresis (2-DE) combined with mass spectrometry (MS) was applied to identify differently expressed protein spots. Results showed that there were eight proteins in the cortex that significantly changed, whose biological functions were involved in (1) energy metabolism (Ndufs1, Atp5h, Atp6v1b2), (2) cytoskeleton (Spna2, Tuba1a, Tubb2a), (3) glycation repair (Hdhd2), and (4) cell stress response (Hspa8). Based on the previous and current studies, ATPase, Spna2, and Hspa8 were shared by fluoride and lead both as common target molecules.
-
-
Co-exposure to arsenic and fluoride on oxidative stress, glutathione linked enzymes, biogenic amines and DNA damage in mouse brain.
We studied the effects of combined exposure to arsenic and fluoride on (i) brain biogenic amines, oxidative stress and its correlation with glutathione and linked enzymes; (ii) alterations in the structural integrity of DNA; and (iii) brain and blood arsenic and fluoride levels. Efficacy of alpha-tocopherol in reducing these changes
-
Interplay of glia activation and oxidative stress formation in fluoride and aluminium exposure.
BACKGROUND: Oxidative stress formation is pivotal in the action of environmental agents which trigger the activation of glial cells and neuroinflammation to stimulate compensatory mechanisms aimed at restoring homeostasis. AIM: This study sets to demonstrate the interplay of fluoride (F) and aluminium (Al) in brain metabolism. Specifically, it reveals how oxidative
-
Fisetin prevents fluoride- and dexamethasone-induced oxidative damage in osteoblast and hippocampal cells
Fluoride intoxication and dexamethasone treatment produce deleterious effects in bone and brain. The aim of this study was to evaluate the effect of fluoride (F) and dexamethasone (Dex) co-exposure on oxidative stress and apoptosis in osteoblast-like MC3T3-E1 and hippocampal HT22 cell lines. Co-exposure to F and Dex resulted in a
-
Co-exposure to fluoride and sulfur dioxide on histological alteration and DNA damage in rat brain.
Fluoride (F) and sulfur dioxide (SO2 ) are the two common environmental contaminants that are associated with neurotoxicity. The present study was conducted to explore individual and combined exposure effects of F and SO2 on histological alteration and DNA damage in rat brain. For this, male Wistar albino rats were
-
Reduction of CAMKII expression in the hippocampus of rats from ingestion of fluoride and/or lead.
Co-existing as environmental pollutants in certain areas of China where lead (Pb) is mined, fluoride (F) and Pb pose serious risks to the human central nervous system (CNS). Calcium/calmodulin-dependent protein kinase II (CaMKII) expression, which is involved in the process of learning and memory, has an important role in CNS
Related Studies :
-
-
-
Fluoride's Effect on Fetal Brain
The human placenta does not prevent the passage of fluoride from a pregnant mother's bloodstream to the fetus. As a result, a fetus can be harmed by fluoride ingested pregnancy. Based on research from China, the fetal brain is one of the organs susceptible to fluoride poisoning. As highlighted by the excerpts
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
-
Fluoride & IQ: 76 Studies
• As of July 18, 2022, a total of 85 human studies have investigated the relationship between fluoride and human intelligence. • Of these investigations, 76 studies have reported that elevated fluoride exposure is associated with reduced IQ in humans. • The studies which reported an association of reduced IQ with exposure
-
Fluoride's Direct Effects on Brain: Animal Studies
The possibility that fluoride ingestion may impair intelligence and other indices of neurological function is supported by a vast body of animal research, including over 40 studies that have investigated fluoride's effects on brain quality in animals. As discussed by the National Research Council, the studies have consistently demonstrated that fluoride, at widely varying concentrations, is toxic to the brain.
-
Fluoride: Developmental Neurotoxicity.
Developmental Neurotoxicity There has been a tremendous amount of research done on the association of exposure to fluoride with developmental neurotoxicity. There are over 60 studies reporting reduced IQ in children and several on the impaired learning/memory in animals. And there are studies which link fluoride to Attention Deficit Hyperactivity Disorder. Teaching
Related FAN Content :
-