Abstract
SUMMARY: The aim of this study was to determine how metabolic and functional changes in diabetes affect the fluoride intake, distribution, and concentration in bone tissue; and whether alterations in fluoride metabolism in diabetes may influence the severity of the disorder. Two groups of rats received 0 (C) or 10 ppm (F10) fluoride via drinking water for three weeks, ad libitum. Two other groups were treated with a dingle dose of streptozotocin to induce diabetes, and also received 0 (D) or 10 ppm fluroide (DF10). The quantity of fluoride consumed via water by the DF10 animals was calculated daily and an equal amount was added to the drinking water of another group of non-diabetic animals (FF).
In the diabetic group (DF10) the intake of fluoride gradually increased, hyperglycemia was more severe, and renal hypertrophy was expressed less than in the diabetic group (D) which consumed deionized water. The femoral fluoride concentration increased in proportion to fluoride intake. The high fluoride intake of FF animals resulted, when compared to DF10 ones, in a further increase in the bone tissue and in relatively less elevation in plasma fluoride concentrations. It is concluded that (1) fluoride supply via drinking water may enhance the severity of diabetes in rats, and (ii) due to diabetic metabolic and functional imbalance, the fluoride metabolism may also change.
-
-
Chronic fluorosis: the disease and its anaesthetic implications..
Abstract Chronic fluorosis is a widespread disease-related to the ingestion of high levels of fluoride through water and food. Prolonged ingestion of fluoride adversely affects the teeth, bones and other organs and alters their anatomy and physiology. Fluoride excess is a risk factor in cardiovascular disease and other major diseases, including
-
The pathogenesis of endemic fluorosis: Research progress in the last 5 years.
Fluorine is one of the trace elements necessary for health. It has many physiological functions, and participates in normal metabolism. However, fluorine has paradoxical effects on the body. Many studies have shown that tissues and organs of humans and animals appear to suffer different degrees of damage after long-term direct
-
Fluoride in Drinking Water: A Scientific Review of EPA’s Standards.
Excerpts: Summary Under the Safe Drinking Water Act, the U.S. Environmental Protection Agency (EPA) is required to establish exposure standards for contaminants in public drinking-water systems that might cause any adverse effects on human health. These standards include the maximum contaminant level goal (MCLG), the maximum contaminant level (MCL), and the secondary
-
Changes in the concentration of fluoride in the serum and bones of female rats with streptozotocin induced diabetes.
The aim of this study was to determine if streptozotocin-induced diabetes in rats as a model for Type-1 human diabetes causes changes in the levels of fluoride (F) and biogenic elements in the bones and serum in the initial stage of the disease. Twenty-two female Wistar rats were given streptozotocin
-
Effects of fluoride on metabolism and mechanical properties of rat bone
Young rats were maintained, over a 2-week period, on laboratory chow and distilled water or water supplemented with 200 ppm fluoride. Metaphyseal and diaphyseal bone of the femurs and tibias of control and treated rats were analyzed. After fluoride treatment there was a decrease of lipid and citrate content and
Related Studies :
-
-
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Fluoride Sensitivity Among Diabetics
This section on Diabetes includes: • Fluoride & Impaired Glucose Tolerance • Fluoride & Insulin • Fluoride Sensitivity Among Diabetics • Fluoridated Water Causes Severe Dental Fluorosis in Children with Diabetes Insipidus • NRC (2006): Fluoride’s Effect on Glucose Metabolism “The present study showed that aortae and mesenteric arteries from streptozotocin-induced diabetic rats exhibited greater contractions
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
Fluoride & Insulin
Insulin is a hormone produced by the pancreas that is responsible for maintaining appropriate levels of glucose in the blood. Insulin allows the body’s cells to take up glucose from the blood, and either use it as an energy source or store it as glycogen. Blood glucose levels in diabetics
-
Fluoridated Water Causes Severe Dental Fluorosis in Children with Diabetes Insipidus
This section on Diabetes includes: • Fluoride & Impaired Glucose Tolerance • Fluoride & Insulin • Fluoride Sensitivity Among Diabetics • Fluoridated Water Causes Severe Dental Fluorosis in Children with Diabetes Insipidus • NRC (2006): Fluoride’s Effect on Glucose Metabolism Excessive exposure to fluoride causes a defect of the tooth enamel known as dental fluorosis. In
Related FAN Content :
-