Abstract
SUMMARY: The aim of this study was to determine how metabolic and functional changes in diabetes affect the fluoride intake, distribution, and concentration in bone tissue; and whether alterations in fluoride metabolism in diabetes may influence the severity of the disorder. Two groups of rats received 0 (C) or 10 ppm (F10) fluoride via drinking water for three weeks, ad libitum. Two other groups were treated with a dingle dose of streptozotocin to induce diabetes, and also received 0 (D) or 10 ppm fluroide (DF10). The quantity of fluoride consumed via water by the DF10 animals was calculated daily and an equal amount was added to the drinking water of another group of non-diabetic animals (FF).
In the diabetic group (DF10) the intake of fluoride gradually increased, hyperglycemia was more severe, and renal hypertrophy was expressed less than in the diabetic group (D) which consumed deionized water. The femoral fluoride concentration increased in proportion to fluoride intake. The high fluoride intake of FF animals resulted, when compared to DF10 ones, in a further increase in the bone tissue and in relatively less elevation in plasma fluoride concentrations. It is concluded that (1) fluoride supply via drinking water may enhance the severity of diabetes in rats, and (ii) due to diabetic metabolic and functional imbalance, the fluoride metabolism may also change.
-
-
Changes in the concentration of fluoride in the serum and bones of female rats with streptozotocin induced diabetes.
The aim of this study was to determine if streptozotocin-induced diabetes in rats as a model for Type-1 human diabetes causes changes in the levels of fluoride (F) and biogenic elements in the bones and serum in the initial stage of the disease. Twenty-two female Wistar rats were given streptozotocin
-
Fluoride in Drinking Water: A Scientific Review of EPA’s Standards.
Excerpts: Summary Under the Safe Drinking Water Act, the U.S. Environmental Protection Agency (EPA) is required to establish exposure standards for contaminants in public drinking-water systems that might cause any adverse effects on human health. These standards include the maximum contaminant level goal (MCLG), the maximum contaminant level (MCL), and the secondary
-
Effect of sodium fluoride on bone biomechanical and histomorphometric parameters and on insulin signaling and insulin sensitivity in ovariectomized rats
Osteoporosis is a systemic disease characterized by bone degradation and decreased bone mass that promotes increased bone fragility and eventual fracture risk. Studies have investigated the use of sodium fluoride (NaF) for the treatment of osteoporosis. However, fluoride can alter glucose homeostasis. The aim of this study was to evaluate
-
Chronic fluorosis: the disease and its anaesthetic implications..
Abstract Chronic fluorosis is a widespread disease-related to the ingestion of high levels of fluoride through water and food. Prolonged ingestion of fluoride adversely affects the teeth, bones and other organs and alters their anatomy and physiology. Fluoride excess is a risk factor in cardiovascular disease and other major diseases, including
-
Effects of fluoride on insulin signaling and bone metabolism in ovariectomized rats
Fluoride is an essential trace element for the maintenance of bone health owing to its capacity to stimulate proliferation and osteoblastic activity that can lead to increased bone formation. However, excessive sodium fluoride (NaF) intake can impair carbohydrate metabolism thereby promoting hyperglycemia, insulin resistance, and changes in insulin signaling. Thus,
Related Studies :
-
-
-
Fluoridated Water Causes Severe Dental Fluorosis in Children with Diabetes Insipidus
This section on Diabetes includes: • Fluoride & Impaired Glucose Tolerance • Fluoride & Insulin • Fluoride Sensitivity Among Diabetics • Fluoridated Water Causes Severe Dental Fluorosis in Children with Diabetes Insipidus • NRC (2006): Fluoride’s Effect on Glucose Metabolism Excessive exposure to fluoride causes a defect of the tooth enamel known as dental fluorosis. In
-
NRC (2006): Fluoride's Effect on Glucose Metabolism
This section on Diabetes includes: • Fluoride & Impaired Glucose Tolerance • Fluoride & Insulin • Fluoride Sensitivity Among Diabetics • Fluoridated Water Causes Severe Dental Fluorosis in Children with Diabetes Insipidus • NRC (2006): Fluoride’s Effect on Glucose Metabolism The following discussion is from pages 258-260 of the NRC’s report’s “Fluoride in Drinking Water: A Scientific
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Fluoride & Impaired Glucose Tolerance
The proper regulation of blood glucose levels is essential to good health. When the body's ability to regulate blood glucose levels falters, as occurs in diabetes mellitus, chronic elevated glucose levels (hyperglycemia) can lead to serious complications. These consequences include damage to the kidneys, nervous system, cardiovascular system, retina, legs
-
Fluoride Sensitivity Among Diabetics
This section on Diabetes includes: • Fluoride & Impaired Glucose Tolerance • Fluoride & Insulin • Fluoride Sensitivity Among Diabetics • Fluoridated Water Causes Severe Dental Fluorosis in Children with Diabetes Insipidus • NRC (2006): Fluoride’s Effect on Glucose Metabolism “The present study showed that aortae and mesenteric arteries from streptozotocin-induced diabetic rats exhibited greater contractions
Related FAN Content :
-