Abstract
SUMMARY: In 1242 apparently healthy and actively employed workers of a Canadian aluminum facility, the history of musculoskeletal symptoms, of the incidence of fractures, of neck and back surgery, as well as the x-ray findings were reviewed. A highly significant relationship of exposure to fluoride was established with the frequency of back and neck surgery, fractures, symptoms of musculoskeletal disease and past history of diseases of bones and joints in the absence of the typical findings of skeletal fluorosis.
Monitoring exposed workers for the early manifestations of “musculoskeletal fluorosis” is recommended prior to the development of destructive and degenerative changes of the skeleton.
Excerpt:
In “Indian basket weavers exposed to fluoride, it was observed that the much used left arm and wrist were particularly susceptible to fluorotic exostosis… [T]he areas suffering repeated or constant stress or trauma, and as a result requiring ongoing repair, may be areas of increased circulation and metabolism and, as a consequence, increased deposition of fluorides.
-
-
Fluoride Sources, Toxicity and Fluorosis Management Techniques - A Brief Review.
Highlights Overexposure to fluoride via drinking water causes several health effects including fluorosis Endemic fluorosis is still persisted in several countries even with advancement in research Most of fluorosis management techniques suggested in the past have come with their own drawbacks Defluoridation techniques based on aluminium materials pose serious
-
Skeletal radiographic appearances of high aluminum fluorosis caused by domestic coal fuel (analysis of 39 cases)
PURPOSE: To find out the skeletal radiologic appearances of high aluminum fluorosis caused by burning coal as domestic fuel. MATERIALS AND METHODS: Thirty-nine cases of high aluminum fluorosis caused by eating corns baked by coal and china clay were studied. The authors also investigated the environmental conditions, clinical appearances and other laboratory test
-
Effects of smoking, use of aluminum utensils, and tamarind consumption on fluorosis in a fluorotic village of Andhra Pradesh, India
A field study was undertaken to determine effects of tamarind, the use of aluminium (Al) cooking utensils, and smoking on dental and skeletal fluorosis in the randomly selected fluoride (F) endemic village of Buttlapally in the Nalgonda District, Andhra Pradesh, India, where the F level in the drinking water is
-
Fluorine and Fluorosis [June 1944].
Excerpt The first account of mottled enamel in human beings was given in 1902 by Eager of the United States Public Health Service who noticed its frequency among Italian emigrants from Naples. Black and McKay (1916) found it occurring in various parts of the U.S.A. and described it more fully in
-
When less is more: a comparison of models to predict fluoride accumulation in free-ranging kangaroos.
Highlights Exposure models can predict toxic effects of fluoride consumption in wildlife. Exposure models that vary in intensity of field data collection warrant comparison. Simple spatial metrics can predict fluoride accumulation in a free-ranging mammal. Complex exposure models may not perform better than simple spatial metrics. Vegetation contaminated by industrial fluoride
Related Studies :
-
-
-
Fluoridation, Dialysis & Osteomalacia
In the 1960s and 1970s, doctors discovered that patients receiving kidney dialysis were accumulating very high levels of fluoride in their bones and blood, and that this exposure was associated with severe forms of osteomalacia, a bone-softening disease that leads to weak bones and often excruciating bone pain. Based on
-
Mayo Clinic: Fluoridation & Bone Disease in Renal Patients
The available evidence suggests that some patients wtih long-term renal failure are being affected by drinking water with as little as 2 ppm fluoride. The finding of adverse effects in patients drinking water with 2 ppm of fluoride suggests that a few similar cases may be found in patients imbibing 1 ppm, especially if large volumes are consumed, or in heavy tea drinkers. The finding of adverse effects in patients drinking water with 2 ppm of fluoride suggests that a few similar cases may be found in patients imbibing 1 ppm, especially if large volumes are consumed, or in heavy tea drinkers and if fluoride is indeed the cause. It would seem prudent, therefore, to monitor the fluoride intake of patients with renal failure living in high fluoride areas.
-
Skeletal Fluorosis & Individual Variability
One of the common fallacies in the research on skeletal fluorosis is the notion that there is a uniform level of fluoride that is safe for everyone in the population. These "safety thresholds" have been expressed in terms of (a) bone fluoride content, (b) daily dose, (c) water fluoride level, (d) urinary fluoride level, and (e) blood fluoride level. The central fallacy with each of these alleged safety thresholds, however, is that they ignore the wide range of individual susceptibility in how people respond to toxic substances, including fluoride.
-
Fluoride Reduces Bone Strength Prior to Onset of Skeletal Fluorosis
The majority of animal studies investigating fluoride's impact on bone strength have found that fluoride has either no effect, or a detrimental effect, on bone strength. Importantly, several of the animal studies that have found fluoride reductes bone strength have reported that this reduction in strength occurs before signs of skeletal fluorosis
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
Related FAN Content :
-