Excerpt:
Crippling fluorosis… is characterized by dense bones, exostoses, neurologic complications due to bony overgrowth, osteoarthritis, and ligamentous calcification.
… new bone formed under the stimulus of fluoride administration may exhibit various degrees of osteosclerosis, osteoporosis, osteomalacia, and architectural disorganization. Of these manifestations, only osteosclerosis increases bone strength. When fluoride is used therapeutically, therefore, it is obvious that conditions must be carefully chosen so as to maximize the development of osteosclerosis and to minimize the undesirable manifestations of osteoporosis and osteomalacia.
… The dramatic increase in the predominant trabecular bone of the axial skeleton during fluoride therapy is not accompanied by a corresponding increase in the predominantly cortical bone of the appendicular skeleton. Bone remodeling in cortical bone is increased during fluoride therapy (35); however, positive coupling does not occur, and formation and resorption remain in relative balance. Indeed, several investigators have reported that cortical bone decreases significantly during treatment…
-
-
Fluoride treatment increased serum IGF-1, bone turnover, and bone mass, but not bone strength, in rabbits
We hypothesized that fluoride partly acts by changing the levels of circulating calcium-regulating hormones and skeletal growth factors. The effects of oral fluoride on 24 female, Dutch-Belted, young adult rabbits were studied. The rabbits were divided into two study groups, one control and the other receiving about 16 mg fluoride/rabbit/day
-
Fluoride reduces bone strength in older rats
In response to recent concerns about the effect of water fluoridation on hip fracture rates, we studied the influence of fluoride intake on bone strength. Four groups of rats were fed a low-fluoride diet ad libitum and received 0, 5, 15, or 50 ppm of fluoride in their drinking water.
-
The genetic influence on bone susceptibility to fluoride
INTRODUCTION: The influence of genetic background on bone architecture and mechanical properties is well established. Nevertheless, to date, only few animal studies explore an underlying genetic basis for extrinsic factors effect such as fluoride effect on bone metabolism. MATERIALS AND METHODS: This study assessed the effect of increasing fluoride doses (0
-
Community water fluoridation, bone mineral density, and fractures: prospective study of effects in older women
OBJECTIVE: To determine whether fluoridation influences bone mineral density and fractures in older women. DESIGN: Multicentre prospective study on risk factors for osteoporosis and fractures. SETTING: Four community based centres in the United States. PARTICIPANTS: 9704 ambulatory women without bilateral hip replacements enrolled during 1986-8; 7129 provided information on exposure to fluoride. MAIN
-
Effect of ultrastructural changes on the toughness of bone.
The ultrastructure of bone can be considered as a conjunction between the biology and the biomechanics of the tissue. It is the result of cellular and molecular activities of bone formation, and its organization dominates the mechanical behavior of bone. Following this perspective, the objective of this review is to
Related Studies :
-
-
-
Fluoridation, Dialysis & Osteomalacia
In the 1960s and 1970s, doctors discovered that patients receiving kidney dialysis were accumulating very high levels of fluoride in their bones and blood, and that this exposure was associated with severe forms of osteomalacia, a bone-softening disease that leads to weak bones and often excruciating bone pain. Based on
-
Mechanisms by which fluoride may reduce bone strength
Based on a large body of animal and human research, it is now known that fluoride ingestion can reduce bone strength and increase the rate of fracture. There are several plausible mechanisms by which fluoride can reduce bone strength. As discussed below, these mechanisms include: Reduction in Cortical Bone Density De-bonding of
-
Fluoride & Osteomalacia
One of fluoride's most well-defined effects on bone tissue is it's ability to increase the osteoid content of bone. Osteoid is unmineralized bone tissue. When bones have too much of it, they become soft and prone to fracture -- a condition known as osteomalacia. As shown below, fluoride has repeatedly been
-
In Vitro Studies on Fluoride & Bone Strength
The "in vitro" research on fluoride and bone strength confirms what has repeatedly been found in animal and human studies: the more fluoride a bone has, the weaker the bone becomes. In an in vitro bone study, the researcher directly exposes a human or animal bone to a fluoride solution
-
Fluoride Increases Osteoid Content of Bone
Fluoride's ability to increase the osteoid content of bone is now undisputed. Osteoid is an unmineralized tissue in bone that, in the normal bone remodeling process, ultimately becomes calcified. As some observers have noted, "[t]he main histological change induced by fluoride is the increase of osteoid volume." (Arnala 1985). One way fluoride
Related FAN Content :
-