Abstract
Endemic skeletal fluorosis is widely prevalent in India and is a major public health problem. The first ever report of endemic skeletal fluorosis and neurological manifestation was from Prakasam district in Andhra Pradesh in the year 1937. Epidemiological and experimental studies in the endemic areas suggest the role of temperate climate, hard physical labor, nutritional status, presence of abnormal concentrations of trace elements like strontium, uranium, silica in water supplies, high fluoride levels in foods and presence of kidney disease in the development of skeletal fluorosis. Neurological complications of endemic skeletal fluorosis, namely radiculopathy, myelopathy or both are mechanical in nature and till date the evidence for direct neurotoxicity of fluoride is lacking. Prevention of the disease should be the aim, knowing the pathogenesis of fluorosis. Surgery has a limited role in alleviating the neurological disability and should be tailored to the individual based on the imaging findings.
-
-
Skeletal fluorosis: don't miss the diagnosis!
Skeletal fluorosis is a rare toxic osteopathy characterized by massive bone fixation of fluoride. The disease occurs as an endemic problem in some parts of the world and is the result of prolonged ingestion or rarely by inhalation of high amounts of fluoride. Radiographic presentation is mainly characterized by bone
-
Efficacy of Calcium-Containing Eggshell Powder Supplementation on Urinary Fluoride and Fluorosis Symptoms in Women in the Ethiopian Rift Valley.
Dietary calcium binds Fluoride (F), thus preventing excess F absorption. We aimed to assess the efficacy of supplementing calcium-containing Eggshell Powder (ESP) on F absorption using urine F excretion and on fluorosis symptoms. In total, 82 women (41 Intervention Group, IG; 41 Control Group, CG) were recruited; overall, 39 in
-
An epidemiological study of skeletal fluorosis in some villages of Chandrapur District, Maharashtra, India
Fluorosis is an important public health problem in certain parts of India. Chandrapur is one of the fluorosis endemic district of Maharashtra. An investigation was undertaken in three villages of study area to assess the clinical symptoms of skeletal fluorosis and in turn to find out the severity of the
-
Effects of fluoride on the ultrastructure and expression of Type I collagen in rat hard tissue
Long-term excessive fluoride (F) intake disrupts the balance of bone deposition and remodeling activities and is linked to skeletal fluorosis. Type I collagen, which is responsible for bone stability and cell biological functions, can be damaged by excessive F ingestion. In this study, Sodium fluoride (NaF) was orally administrated to
-
Skeletal fluorosis from eating soil
A woman with chronic pyelonephritis developed progressive muscular weakness and bone pain. For twenty years she had habitually ingested fluoride-rich soil. Osteosclerosis was found on x-ray examination, and fluorosis was confirmed by bone biopsy. Renal failure augmented skeletal retention of excessive fluoride intake which, in turn, appears to have intensified symptomatic renal
Related Studies :
-
-
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
Variability in Radiographic Appearance of Skeletal Fluorosis
Osteosclerosis (dense bone) is the bone change typically associated with skeletal fluorosis, particularly in the axial skeleton (spine, pelvis, and ribs). Research shows, however, that skeletal fluorosis produces a spectrum of bone changes, including osteomalacia, osteoporosis, exostoses, changes resulting from secondary hyperparathyroidism, and combinations thereof. Although the reason for this radiographic variability is not yet fully understood, it is believed to relate to the dose of fluoride consumed, the individual's nutritional status, exposure to aluminum, genetic susceptibility, presence of kidney disease, and area of the skeleton examined.
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Mayo Clinic: Fluoridation & Bone Disease in Renal Patients
The available evidence suggests that some patients wtih long-term renal failure are being affected by drinking water with as little as 2 ppm fluoride. The finding of adverse effects in patients drinking water with 2 ppm of fluoride suggests that a few similar cases may be found in patients imbibing 1 ppm, especially if large volumes are consumed, or in heavy tea drinkers. The finding of adverse effects in patients drinking water with 2 ppm of fluoride suggests that a few similar cases may be found in patients imbibing 1 ppm, especially if large volumes are consumed, or in heavy tea drinkers and if fluoride is indeed the cause. It would seem prudent, therefore, to monitor the fluoride intake of patients with renal failure living in high fluoride areas.
Related FAN Content :
-