Abstract
Endemic skeletal fluorosis is widely prevalent in India and is a major public health problem. The first ever report of endemic skeletal fluorosis and neurological manifestation was from Prakasam district in Andhra Pradesh in the year 1937. Epidemiological and experimental studies in the endemic areas suggest the role of temperate climate, hard physical labor, nutritional status, presence of abnormal concentrations of trace elements like strontium, uranium, silica in water supplies, high fluoride levels in foods and presence of kidney disease in the development of skeletal fluorosis. Neurological complications of endemic skeletal fluorosis, namely radiculopathy, myelopathy or both are mechanical in nature and till date the evidence for direct neurotoxicity of fluoride is lacking. Prevention of the disease should be the aim, knowing the pathogenesis of fluorosis. Surgery has a limited role in alleviating the neurological disability and should be tailored to the individual based on the imaging findings.
-
-
Thoracic myelopathy from coincident fluorosis and epidural lipomatosis
Skeletal fluorosis is rare in North America. It can present with back pain and extremity weakness. Immobilization of the spine and the extremity joints can occur. It is usually caused by abnormally increased oral fluoride intake over many years. Epidural lipomatosis is usually caused by idiopathic obesity or corticosteroid use.
-
European Commission: Opinions on the 2011 SCHER report on fluoridation for the Layman
European Commission: Opinions on the 2011 SCHER report on fluoridation for the Layman About this publication on Fluoridation Online at https://ec.europa.eu/health/scientific_committees/opinions_layman/fluoridation/en/about.htm 1. Source for this Publication The texts in level 3 are directly sourced from “Critical review of any new evidence on the hazard profile, health effects, and human exposure to fluoride and the fluoridating
-
Effects of fluoride toxicity on animals, plants, and soil health: a review.
Substantial multi-disciplinary efforts have been made to investigate the effects of environmental fluoride ion (F) pollution since the last century. The chronic ingestion of high doses of F may adversely affect human health by causing skeletal fluorosis, dental fluorosis, bone fractures, the formation of kidney stones, decreased birth rates, weakening
-
Total knee arthroplasty for the treatment of knee osteoarthritis caused by endemic skeletal fluorosis
BACKGROUND: Knee osteoarthritis caused by endemic skeletal fluorosis is a complex and chronic systemic disease,which can cause the damage of surrounding bone and sclerotin of knee joint. OBJECTIVE: To investigate the effect of total knee arthroplasty (TKA) in the treatment of knee osteoarthritis caused by endemic skeletal fluorosis. METHODS: Nine patients suffered
-
Bone mineral density of the spine and femur in early postmenopausal Turkish women with endemic skeletal fluorosis
The aim of this prospective, comparative study was to investigate the bone mineral density (BMD) changes in a group of early postmenopausal Turkish women with endemic skeletal fluorosis and to study effects of endemic fluorosis on BMD. Bone mineral density of L2-L4 vertebra, femur neck, femur trochanter, and Ward's triangle were measured in 45
Related Studies :
-
-
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
Variability in Radiographic Appearance of Skeletal Fluorosis
Osteosclerosis (dense bone) is the bone change typically associated with skeletal fluorosis, particularly in the axial skeleton (spine, pelvis, and ribs). Research shows, however, that skeletal fluorosis produces a spectrum of bone changes, including osteomalacia, osteoporosis, exostoses, changes resulting from secondary hyperparathyroidism, and combinations thereof. Although the reason for this radiographic variability is not yet fully understood, it is believed to relate to the dose of fluoride consumed, the individual's nutritional status, exposure to aluminum, genetic susceptibility, presence of kidney disease, and area of the skeleton examined.
-
Fluoride & Osteomalacia
One of fluoride's most well-defined effects on bone tissue is it's ability to increase the osteoid content of bone. Osteoid is unmineralized bone tissue. When bones have too much of it, they become soft and prone to fracture -- a condition known as osteomalacia. As shown below, fluoride has repeatedly been
Related FAN Content :
-