The present study highlights fluoride -induced toxicity and the protective role of ascorbic acid in the liver and ovary of freshwater fish, Heteropneustis fossilis. The fish specimens were exposed to different concentrations (35 mg F/L and 70 mg F/L) of fluoride. Parameters related to oxidative stress were studied at the end of the experiment. The biomarkers selected for the study were thiobarbituric acid reactive substances for assessing the extent of lipid peroxidation (LPO) and antioxidant defense system such as reduced glutathione (GSH), superoxide dismutase (SOD) catalase (CAT) glutathione peroxidase (GPx), and glutathione S-transferase (GST) activities. The fluoride exposure significantly elevated the level of LPO, CAT, SOD, and GST in the tissues of treated group as well as modulated the activities of GSH and level of GPx after exposure as compared to the control. A significant decrease in GPx activity was found in these tissues suggesting that fluoride exposure increases the level of free radical, as well as CAT activity. Pre- and post treatment with ascorbic acid decreased the LPO, SOD, CAT, GST level, and increased GSH, GPx levels in the liver and ovary.
-
-
Protective effect of quercetin against sodium fluoride induced oxidative stress in rat's heart
The antioxidative and cardioprotective properties of quercetin were investigated against sodium fluoride (NaF) induced oxidative stress in rat hearts. Experimental rats were divided into five groups. The first group served as the untreated (normal) control. The second group received NaF at a dose of 600 ppm through drinking water for
-
Ameliorative effects of quercetin on sodium fluoride-induced oxidative stress in rat's kidney
OBJECTIVE: The in vivo nephroprotective effect of quercetin against sodium fluoride (NaF)-induced damage was studied. METHODS: Renal injury was induced by daily administration of NaF (600 ppm) through drinking water for 1 week. The levels of reduced glutathione (GSH), lipid peroxidation as well as superoxide dismutase and catalase activity of
-
Reversal of fluoride induced cell injury through elimination of fluoride and consumption of diet rich in essential nutrients and antioxidants
The objective of the present communication is to address the issues concerning reversal of fluoride induced cell injury and disease (i.e. fluorosis) through the elimination of fluoride and consumption of a diet containing essential nutrients and antioxidants. Humans afflicted with fluorosis, as a result of consuming fluoride contaminated water or
-
Neuroprotective effect of ascorbic acid and ginkgo biloba against fluoride caused neurotoxicity
Excessive consumption of fluoride through drinking water or other sources lead to skeletal and dental fluorosis. According to the world health organization 23 nations are facing the problem of fluorosis. In the recent past researchers describe the non-skeletal fluorosis where soft tissues and major organs are the victims of fluoride
-
Cytoprotective effects of curcumin on sodium fluoride-induced intoxication in rat erythrocytes
Curcumin is well known for its potent antioxidant activity. The result of numerous studies showed that antioxidants can protect against fluoride-induced toxicity. In the present study, protective effects of curcumin against sodium fluoride-induced toxicity in rat erythrocytes were evaluated. Curcumin (10 and 20 mg/kg) and vitamin C (10 mg/kg) were
Related Studies :
-
-
-
Fluoride & Oxidative Stress
A vast body of research demonstrates that fluoride exposure increases oxidative stress. Based on this research, it is believed that fluoride-induced oxidative stress is a key mechanism underlying the various toxic effects associated with fluoride exposure. It is also well established that fluoride's toxic effects can be ameliorated by exposure
-
Nutrient Deficiencies Enhance Fluoride Toxicity
It has been known since the 1930s that poor nutrition enhances the toxicity of fluoride. As discussed below, nutrient deficiencies have been specifically linked to increased susceptibility to fluoride-induced tooth damage (dental fluorosis), bone damage (osteomalacia), neurotoxicity (reduced intelligence), and mutagenicity. The nutrients of primary importance appear to be calcium,
-
Fluoride Exposure Increases Metabolic Requirement for Calcium & Vitamin D
It is well known that individuals with nutrient deficiencies are more susceptible to fluoride toxicity, including fluoride's bone effects. As discussed in the following studies, fluoride increases the skeleton's need for calcium (and vitamin D) by increasing the amount of unmineralized tissue (osteoid) in the bone. When insufficient calcium and
-
Fluoride & Rickets
One of fluoride's most well-defined effects on bone tissue is it's ability to increase the osteoid (unmineralized bone) content of bone. When bones have too much osteoid, they become soft and prone to fracture -- a condition known as osteomalacia. When osteomalacia develops during childhood, it is called "rickets." The potential for fluoride
-
Fluoride Is Not an Essential Nutrient
In the 1950s, dentists believed that fluoride was a “nutrient.” A nutrient is a vitamin or mineral that is necessary for good health. Dentists believed that fluoride ingestion during childhood was necessary for strong, healthy teeth. A “fluoride deficiency” was thus believed to cause cavities, just like a deficiency of calcium can
Related FAN Content :
-