Abstract
OBJECTIVE: To investigate the possible biological mechanism of dental fluorosis at a molecular level.
MATERIAL AND METHODS: Cultured LS8 were incubated with serum-free medium containing selected concentrations of NaF (0???2?mM) for either 24 or 48?h. Subcellular microanatomy was characterized using TEM; meanwhile, selected biomolecules were analysed using various biochemistry techniques. Transient transfection was used to modulate a molecular pathway for apoptosis.
RESULTS: Apoptosis of LS8 was induced by NaF treatment that showed both time and concentration dependency. The activity of caspase-3, -8, -9 was found to be increased with NaF in a dose-dependent manner. Western blot revealed that the protein expression of p-ERK and p-JNK were decreased, while the expression of p-P38 was increased. Inhibition of the p-ERK and p-JNK pathways resulted in a similar decrease for caspase-3.
CONCLUSION: During NaF-induced apoptosis of LS8, p-ERK and p-JNK were closely associated with induction of apoptosis, which might be a mechanism of dental fluorosis.
-
-
Fluoride induced endoplasmic reticulum stress and calcium overload in ameloblasts
OBJECTIVE: The aim of the study was to evaluate the involvement of endoplasmic reticulum stress and intracellular calcium overload on the development of dental fluorosis. METHODS: We cultured and exposed rat ameloblast HAT-7 cells to various concentrations of fluoride and measured apoptosis with flow cytometry and intracellular Ca2+ changes using confocal
-
Biphasic Functions of Sodium Fluoride (NaF) in Soft and in Hard Periodontal Tissues.
Sodium fluoride (NaF) is widely used in clinical dentistry. However, the administration of high or low concentrations of NaF has various functions in different tissues. Understanding the mechanisms of the different effects of NaF will help to optimize its use in clinical applications. Studies of NaF and epithelial cells, osteoblasts,
-
Micromolar fluoride alters ameloblast lineage cells in vitro.
Fluorosed enamel is caused by exposure to fluoride during tooth formation. The objective of this study was to determine whether epithelial ameloblast-lineage cells, derived from the human enamel organ, are directly affected by micromolar concentrations of fluoride. Cells were cultured in the presence of fluoride, and proliferation was measured by
-
Protective effect of lycopene on fluoride-induced ameloblasts apoptosis and dental fluorosis through oxidative stress-mediated Caspase pathways
Fluoride is an environmental toxicant and induces dental fluorosis and oxidative stress. Lycopene (LYC) is an effective antioxidant that is reported to attenuate fluoride toxicity. To determine the effects of LYC on sodium fluoride (NaF) -induced teeth and ameloblasts toxicity, rats were treated with NaF (10 mg/kg) and/or LYC (10 mg/kg) by
-
High-fluoride promoted phagocytosis-induced apoptosis in a matured ameloblast-like cell line
Endocytosis and phagocytosis are important physiologic activities occurring during ameloblast differentiation. We have previously found that excess fluoride inhibited ameloblasts endocytotic functions. Here, we hypothesized that increasing amounts of fluoride may affect ameloblast phagocytotic function during their differentiation. Using cell culture, we first induced maturation of the mouse ameloblast-like LS8
Related Studies :
-
-
-
Mechanisms by Which Fluoride Causes Dental Fluorosis Remain Unknown
When it comes to how fluoride impacts human health, no tissue in the body has been studied more than the teeth. Yet, despite over 50 years of research, the mechanism by which fluoride causes dental fluorosis (a hypo-mineralization of the enamel that results in significant staining of the teeth) is not
-
Dental Fluorosis Is a "Hypo-mineralization" of Enamel
Teeth with fluorosis have an increase in porosity in the subsurface enamel ("hypomineralization"). The increased porosity of enamel found in fluorosis is a result of a fluoride-induced impairment in the clearance of proteins (amelogenins) from the developing teeth. Despite over 50 years of research, the exact mechanism by which fluoride impairs amelogin
-
Diagnostic Criteria for Dental Fluorosis: The Thylstrup-Fejerskov (TF) Index
The traditional criteria (the "Dean Index") for diagnosing dental fluorosis was developed in the first half of the 20th century by H. Trendley Dean. While the Dean Index is still widely used in surveys of fluorosis -- including the CDC's national surveys of fluorosis in the United States -- dental
-
Community Fluorosis Index (CFI)
The current Community Fluorosis Index for U.S. adolescents as a whole (from both fluoridated and non-fluoridated areas) is roughly 5 times higher than the CFI health authorities predicted for fluoridated areas when fluoridation first began. It is also higher than the CFI that the NIDR found in fluoridated areas back in the 1980s. It is readily apparent, therefore, that children are ingesting far more fluoride than was the case in the 1950s, and even as recently as the 1980s.
-
Dental Fluorosis: The "Cosmetic" Factor
Any condition that can cause children to be embarrassed about their physical appearance can have significant consequences on their self-esteem and confidence. Researchers have repeatedly found that "physical appearance [is] the best predictor of self-esteem" in adolescents, (Harter 2000) and that facial attractiveness, particularly the appearance of one's teeth, is a
Related FAN Content :
-