Abstract
We grouped mice [strains: C57BL/6J (n=32) and C3H/HeJ (n=32)] to address the influence of bone density on fluoride‘s (F’s) biological effects. These animals received low-fluoride food and water containing 0 (control group) or 50ppm of F for up to 28days. The upper left central incisor was extracted, and the left maxilla was collected at 7, 14, 21, and 28days for histological and histomorphometric analysis to estimate bone neoformation. Our results showed bone neoformation in all of the evaluated groups, with the presence of bone islets invading the center of the alveoli when replacing the existing connective tissue. Curiously, this biological phenomenon was more evident in the C57BL/6J strain. The histomorphometric analysis confirmed the histological findings in relation to the amount of new bone tissue and showed a decrease in C3H/HeJ mice (control group). Altogether, our results showed differential effects of fluoride bone metabolism, confirming a genetic component in susceptibility to the effects of fluoride.
-
-
The genetic influence on bone susceptibility to fluoride
INTRODUCTION: The influence of genetic background on bone architecture and mechanical properties is well established. Nevertheless, to date, only few animal studies explore an underlying genetic basis for extrinsic factors effect such as fluoride effect on bone metabolism. MATERIALS AND METHODS: This study assessed the effect of increasing fluoride doses (0
-
Bone response to fluoride exposure is influenced by genetics
Genetic factors influence the effects of fluoride (F) on amelogenesis and bone homeostasis but the underlying molecular mechanisms remain undefined. A label-free proteomics approach was employed to identify and evaluate changes in bone protein expression in two mouse strains having different susceptibilities to develop dental fluorosis and to alter bone
-
Preliminary screening of fluorine-stained osteoblastic apoptosis-related microRNA.
This article has been accepted for publication and undergone full peer review but has not been through the copy editing, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/ar.24709. Endemic fluorosis is a chronic systemic
-
Chronic Exposure to Fluoride During Gestation and Lactation Increases Mandibular Bone Volume of Suckling Rats.
We aimed to investigate the effect of maternal exposure to NaF on mandibular bone microarchitecture and phosphocalcic plasma parameters of the offspring. For this purpose, 10-, 15-, and 21-day-old pups (n?=?6-8 per group) from two groups of mothers, control and NaF 50mg/L treated dams, were used. Plasma calcium (Ca) and
-
The effects of protein deficiency and fluoride on bone mineral content of rat tibia
This study examined the effects of chronic protein deficiency and fluoride administration (10 mg/kg/day), separately or in combination, on rat tibia properties. Protein deficiency increased the bone fluoride concentration and reduced the bone mineral content (BMC) especially at the proximal or growing end which contains mainly cancellous bone. Fluoride administration
Related Studies :
-
-
-
Factors which increase the risk for skeletal fluorosis
The risk for developing skeletal fluorosis, and the course the disease will take, is not solely dependent on the dose of fluoride ingested. Indeed, people exposed to similar doses of fluoride may experience markedly different effects. While the wide range in individual response to fluoride is not yet fully understood, the following are some of the factors that are believed to play a role.
-
Fluoride Exposure Aggravates the Impact of Iodine Deficiency
A consistent body of animal and human research shows that fluoride exposure worsens the impact of an iodine deficiency. Iodine is the basic building block of the T3 and T4 hormones and thus an adequate iodine intake is essential for the proper functioning of the thyroid gland. When iodine intake is inadequate during infancy and
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
Fluoridated Water Causes Severe Dental Fluorosis in Children with Diabetes Insipidus
This section on Diabetes includes: • Fluoride & Impaired Glucose Tolerance • Fluoride & Insulin • Fluoride Sensitivity Among Diabetics • Fluoridated Water Causes Severe Dental Fluorosis in Children with Diabetes Insipidus • NRC (2006): Fluoride’s Effect on Glucose Metabolism Excessive exposure to fluoride causes a defect of the tooth enamel known as dental fluorosis. In
-
Kidney Patients Are at Increased Risk of Fluoride Poisoning
It is well established that individuals with kidney disease are susceptible to suffering bone damage and other ill effects from low levels of fluoride exposure. Kidney patients are at elevated risk because when kidneys are damaged they are unable to efficiently excrete fluoride from the body. As a result, kidney patients
Related FAN Content :
-