Abstract
We grouped mice [strains: C57BL/6J (n=32) and C3H/HeJ (n=32)] to address the influence of bone density on fluoride‘s (F’s) biological effects. These animals received low-fluoride food and water containing 0 (control group) or 50ppm of F for up to 28days. The upper left central incisor was extracted, and the left maxilla was collected at 7, 14, 21, and 28days for histological and histomorphometric analysis to estimate bone neoformation. Our results showed bone neoformation in all of the evaluated groups, with the presence of bone islets invading the center of the alveoli when replacing the existing connective tissue. Curiously, this biological phenomenon was more evident in the C57BL/6J strain. The histomorphometric analysis confirmed the histological findings in relation to the amount of new bone tissue and showed a decrease in C3H/HeJ mice (control group). Altogether, our results showed differential effects of fluoride bone metabolism, confirming a genetic component in susceptibility to the effects of fluoride.
-
-
Bone response to fluoride exposure is influenced by genetics
Genetic factors influence the effects of fluoride (F) on amelogenesis and bone homeostasis but the underlying molecular mechanisms remain undefined. A label-free proteomics approach was employed to identify and evaluate changes in bone protein expression in two mouse strains having different susceptibilities to develop dental fluorosis and to alter bone
-
The genetic influence on bone susceptibility to fluoride
INTRODUCTION: The influence of genetic background on bone architecture and mechanical properties is well established. Nevertheless, to date, only few animal studies explore an underlying genetic basis for extrinsic factors effect such as fluoride effect on bone metabolism. MATERIALS AND METHODS: This study assessed the effect of increasing fluoride doses (0
-
The effects of protein deficiency and fluoride on bone mineral content of rat tibia
This study examined the effects of chronic protein deficiency and fluoride administration (10 mg/kg/day), separately or in combination, on rat tibia properties. Protein deficiency increased the bone fluoride concentration and reduced the bone mineral content (BMC) especially at the proximal or growing end which contains mainly cancellous bone. Fluoride administration
-
Toxicology and Carcinogenesis Studies of Sodium Fluoride in F344/N Rats and B6C3F1 Mice (Drinking Water Studies)
CASRN: 7681-49-4 Chemical Formula: NaF Molecular Weight: 41.99 Report Date: December 1990 Sodium fluoride is a white, crystalline, water-soluble powder used in municipal water fluoridation systems, in various dental products, and in a variety of industrial applications. Toxicology and carcinogenesis studies were conducted with F344/N rats and B6C3F1 mice of each sex by incorporating
-
The response of vertebral bone mineral density during the treatment of osteoporosis with sodium fluoride
Forty-eight female patients with postmenopausal osteoporotic vertebral compression fractures were treated with sodium fluoride and calcium supplements; their response to treatment was documented by sequential measurements of vertebral and forearm bone mineral density (BMD). During treatment 25 patients developed significant side-effects due to fluoride, and ultimately, 18 patients (37%) were
Related Studies :
-
-
-
Factors which increase the risk for skeletal fluorosis
The risk for developing skeletal fluorosis, and the course the disease will take, is not solely dependent on the dose of fluoride ingested. Indeed, people exposed to similar doses of fluoride may experience markedly different effects. While the wide range in individual response to fluoride is not yet fully understood, the following are some of the factors that are believed to play a role.
-
Nutrient Deficiencies Enhance Fluoride Toxicity
It has been known since the 1930s that poor nutrition enhances the toxicity of fluoride. As discussed below, nutrient deficiencies have been specifically linked to increased susceptibility to fluoride-induced tooth damage (dental fluorosis), bone damage (osteomalacia), neurotoxicity (reduced intelligence), and mutagenicity. The nutrients of primary importance appear to be calcium,
-
Annapolis: Water Fluoridation Linked to Death of Dialysis Patient
EVENING CAPITAL (Annapolis, Maryland) November 29, 1979 Fluoride Linked to Death by Mary Ann Kryzankowicz Staff Writer Fluoride poisoning has been definitely linked to the death of a 65-year-old kidney dialysis patient who became ill during a blood cleaning process Nov 11. State Medical Examiner Dr. (illegible) Guard has ruled that Lawrence Blake, 65, of Arundel
-
Dental Fluorosis & Enamel Hypoplasia in Children with Kidney Disease
Children with kidney disease are known to have high levels of fluoride in their blood and to be at risk for disfiguring tooth defects. Research suggests that high levels of fluoride in blood, which can cause the tooth defect known as dental fluorosis, can contribute to the defects that occur
-
Unheeded Warnings: Government Health Authorities Ignore Fluoride Risk for Kidney Patients
Despite the well known fact that individuals with kidney disease are at much higher risk of fluoride toxicity than the general population, there has yet to be any attempt in the United States, or any other country that practices mass-scale water fluoridation to determine the prevalence of fluoride-related effects (e.g.,
Related FAN Content :
-