Abstract
PURPOSE: To study the effect of fluoride on autophagy in rat ameloblasts both in vitro and in vivo.
METHODS: Logarithmic-phase HAT-7 cells were cultured in different concentrations of fluoride for 48h. Transmission electron microscopy (TEM) was used to detect autophagosomes. Western blot and RT-qPCR were carried out to examine the expression of LC3 and Beclin 1. Forty Wistar rats were divided into 4 groups randomly. The expression of LC3 and Beclin 1 in rats was investigated by immunohistochemical staining in vivo. The data were analysed using SPSS13.0 software package.
RESULTS: The amount of autophagosomes in the experimental group was significantly more than that in the control group (P<0.05). The expression of LC3 and Beclin 1 were up-regulated in dose dependent manner after treatment with fluoride. Regression analysis showed that fluoride dependently induced the expression of LC3 and Beclin 1 (P<0.05).Immunohistochemical analysis revealed that the expression of LC3 and Beclin 1 in rat ameloblasts in the experimental groups was positive compared to control group.
CONCLUSIONS: Excessive fluoride induced autophagy in ameloblasts both in vitro and in vivo.
-
-
Possible Association Between Polymorphisms in ESR1, COL1A2, BGLAP, SPARC, VDR, and MMP2 Genes and Dental Fluorosis in a Population from an Endemic Region of West Bengal.
Dental fluorosis (DF) is the most prevalent form of fluorosis in India affecting millions of people all over the country. As estrogen receptor 1 (ESR1), collagen type 1 alpha 2 (COL1A2), bone ?-carboxyglutamic acid protein (BGLAP), secreted protein acidic and cysteine-rich (SPARC), vitamin D receptor (VDR), and matrix metallopeptidase 2
-
ENAM Gene Variation in Students Exposed to Different Fluoride Concentrations.
The ENAM gene is important in the formation of tooth enamel; an alteration can affect the lengthening of the crystals, and the thickness in enamel. The objective was to determine the presence of the single nucleotide variant (SNV) rs12640848 of the ENAM gene in students exposed to different concentrations of
-
Protective effect of lycopene on fluoride-induced ameloblasts apoptosis and dental fluorosis through oxidative stress-mediated Caspase pathways
Fluoride is an environmental toxicant and induces dental fluorosis and oxidative stress. Lycopene (LYC) is an effective antioxidant that is reported to attenuate fluoride toxicity. To determine the effects of LYC on sodium fluoride (NaF) -induced teeth and ameloblasts toxicity, rats were treated with NaF (10 mg/kg) and/or LYC (10 mg/kg) by
-
High-fluoride promoted phagocytosis-induced apoptosis in a matured ameloblast-like cell line
Endocytosis and phagocytosis are important physiologic activities occurring during ameloblast differentiation. We have previously found that excess fluoride inhibited ameloblasts endocytotic functions. Here, we hypothesized that increasing amounts of fluoride may affect ameloblast phagocytotic function during their differentiation. Using cell culture, we first induced maturation of the mouse ameloblast-like LS8
-
Short exposure to high levels of fluoride induces stage-dependent structural changes in ameloblasts and enamel mineralization.
We tested the hypothesis that the sensitivity of forming dental enamel to fluoride (F-) is ameloblast developmental stage-dependent and that enamel mineralization disturbances at the surface of fluorotic enamel are caused by damage to late-secretory- and transitional-stage ameloblasts. Four-day-old hamsters received a single intraperitoneal dose of 2.5-20 mg NaF/kg body
Related Studies :
-
-
-
Mechanisms by Which Fluoride Causes Dental Fluorosis Remain Unknown
When it comes to how fluoride impacts human health, no tissue in the body has been studied more than the teeth. Yet, despite over 50 years of research, the mechanism by which fluoride causes dental fluorosis (a hypo-mineralization of the enamel that results in significant staining of the teeth) is not
-
Dental Fluorosis Is a "Hypo-mineralization" of Enamel
Teeth with fluorosis have an increase in porosity in the subsurface enamel ("hypomineralization"). The increased porosity of enamel found in fluorosis is a result of a fluoride-induced impairment in the clearance of proteins (amelogenins) from the developing teeth. Despite over 50 years of research, the exact mechanism by which fluoride impairs amelogin
-
Community Fluorosis Index (CFI)
The current Community Fluorosis Index for U.S. adolescents as a whole (from both fluoridated and non-fluoridated areas) is roughly 5 times higher than the CFI health authorities predicted for fluoridated areas when fluoridation first began. It is also higher than the CFI that the NIDR found in fluoridated areas back in the 1980s. It is readily apparent, therefore, that children are ingesting far more fluoride than was the case in the 1950s, and even as recently as the 1980s.
-
Moderate/Severe Dental Fluorosis
In its "moderate" and severe forms, fluoride causes a marked increase in the porosity of the enamel. After eruption into mouth, the porous enamel of moderate to severe fluorosis readily takes up stain, creating permanent brown and black discolorations of the teeth. In addition to extensive staining, teeth with moderate to severe fluorosis are more prone to attrition and wear - leading to pitting, chipping, and decay.
-
"Mild" Dental Fluorosis: Perceptions & Psychological Impact
The vast majority of research has found that patients, parents, and the general public alike view mild fluorosis (TF score 3) as a significant blemish of the teeth, one that is likely to embarrass the affected child to a degree that cosmetic treatment would be warranted.
Related FAN Content :
-