Fluoride Action Network


Fluorides are present in the environment. Excessive systemic exposure to fluorides can lead to disturbances of bone homeostasis (skeletal fluorosis) and enamel development (dental/enamel fluorosis). The severity of dental fluorosis is also dependent upon fluoride dose and the timing and duration of fluoride exposure. Fluoride’s actions on bone cells predominate as anabolic effects both in vitro and in vivo. More recently, fluoride has been shown to induce osteoclastogenesis in mice. Fluorides appear to mediate their actions through the MAPK signaling pathway and can lead to changes in gene expression, cell stress, and cell death. Different strains of inbred mice demonstrate differential physiological responses to ingested fluoride. Genetic studies in mice are capable of identifying and characterizing fluoride-responsive genetic variations. Ultimately, this can lead to the identification of at-risk human populations who are susceptible to the unwanted or potentially adverse effects of fluoride action and to the elucidation of fundamental mechanisms by which fluoride affects biomineralization.