Fluoride Action Network

Abstract

Expressions of N-methyl-d-aspartic acid receptors (NMDARs) in the brains of rats and primary neurons exposed to high fluoride were investigated. Sprague-Dawley rats were divided randomly into a fluorosis group (50 ppm fluoride in the drinking water for 6 months) and controls (<0.5ppm fluoride) and the offspring from these rats sacrificed on postnatal days 1, 7, 14, 21 and 28. The primary cultured neurons from the hippocampus of neonatal rats were treated with 5 and 50ppm fluoride for 48h. NMDAR subunits at protein or mRNA levels were quantified by Western blotting or real-time PCR. The phosphorylated calmodulin-protein kinase II (CaMKII) was determined by Western blotting, concentration of Ca2+ in neurons by laser confocal microscopy and apoptosis by flow cytometry. In the brains of adult rats and pups as well as in primary neurons exposed to high fluoride, the mRNAs encoding GluN1 and GluN2B subunits and the corresponding proteins were elevated, the GluN3A lowered and the GluN2A unchanged. In addition, the level of phosphor-CaMKII was reduced, and Ca2+ influx and apoptosis enhanced in the brains of rats and cultured neurons exposed to high fluoride. The results indicate that such modifications may involve brain damage induced by chronic fluorosis.

Excerpt:

4. Discussion
… the numbers of Nissl bodies in neurons in the hippocampus and cortex of
brains from both adult rats and their pups with fluorosis were lowered.
Such reduction in Nissl bodies, showing large granular bodies consisting
of rough endoplasmic reticulum with rosettes of free ribosomes
carrying out protein synthesis, indicates injury of neurons [23].