Abstract
The protective role of vitamin E (Vit E) against neurotoxicity induced by fluorosis was investigated by using Sprague-Dawley (SD) rats fed with 50 ppm fluoride in drinking water for 10 months. Spatial learning and memory of rats were measured by the Morris water maze test; the expressions of M1 and M3 muscarinic acetylcholine receptors (mAChRs) at the protein level in the hippocampus and cortex were detected by immunohistochemistry; and the levels of O 2 •– and malondiadehyde (MDA) were evaluated by biochemical methods. The results showed that high fluoride inhibited learning ability and memory of the rats, reduced the protein expressions of both M1 and M3 mAChRs, and elevated the levels of O 2 •– and MDA in the rat brains. Interestingly, the treatment of Vit E prevented the increased production of O 2 •– and MDA in brains of the rats fed with high fluoride. In addition, Vit E attenuated the decreased learning ability and memory of the rats exposed to high fluoride, and the mechanism for this may involve the recovered expression of mAChRs resulting from the use of the antioxidant.
-
-
The analog of Ginkgo biloba extract 761 is a protective factor of cognitive impairment induced by chronic fluorosis.
Ginkgo biloba extract EGb761 is widely used to treat patients with learning and memory impairment in Alzheimer's disease and Parkinson's disease in China. However, it is not yet clear whether the analog of EGb761 (EGb) has a protective effect on the learning and memory damage induced by chronic fluorosis. In
-
Sirt3-mediated mitochondrial dysfunction is involved in fluoride-induced cognitive deficits.
Highlights Fluoride induces cognitive deficits in mice. Fluoride exposure results in neural/synaptic injury in the hippocampus of mice. Mitochondrial dysfunction contributes to neural/synaptic alternations. Inhibition of Sirt3 is involved in the fluoride-evoked mitochondrial abnormalities. Abstract Excessive fluoride is capable of inducing cognitive deficits, but the mechanisms remain elusive. This study aimed
-
Alterations in the memory of rat offspring exposed to low levels of fluoride during gestation and lactation: Involvement of the a7 nicotinic receptor and oxidative stress.
Daily exposure to fluoride (F) depends mainly on the intake of this element with drinking water. When administered during gestation and lactation, F has been associated with cognitive deficits in the offspring. However, the mechanisms underlying the neurotoxicity of F remain obscure. In the current study, we investigated the effects
-
Effects of chronic fluorosis on the brain.
Highlights Reviewing the mechanism of brain injury caused by chronic fluorosis is of great significance for protecting residents in fluorosis endemic areas. Abstract This article reviews the effects of chronic fluorosis on the brain and possible mechanisms. We used PubMed, Medline and Cochraine databases to collect data on fluorosis, brain injury,
-
Evaluation of Metformin and Dehydrozingerone against fluorosis induced neurodevelopmental toxicity in preclinical models.
Background: Inorganic fluoride is widely used in dental practices to treat problems like dental caries and also to prevent bone related issues. It has been reported that exposure to excess amounts of fluoride either through drinking water or other sources impairs vital functions of the body and can
Related Studies :
-
-
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
-
Fluoride & Oxidative Stress
A vast body of research demonstrates that fluoride exposure increases oxidative stress. Based on this research, it is believed that fluoride-induced oxidative stress is a key mechanism underlying the various toxic effects associated with fluoride exposure. It is also well established that fluoride's toxic effects can be ameliorated by exposure
-
Fluoride's Effect on Fetal Brain
The human placenta does not prevent the passage of fluoride from a pregnant mother's bloodstream to the fetus. As a result, a fetus can be harmed by fluoride ingested pregnancy. Based on research from China, the fetal brain is one of the organs susceptible to fluoride poisoning. As highlighted by the excerpts
-
Fluoride & IQ: 76 Studies
• As of July 18, 2022, a total of 85 human studies have investigated the relationship between fluoride and human intelligence. • Of these investigations, 76 studies have reported that elevated fluoride exposure is associated with reduced IQ in humans. • The studies which reported an association of reduced IQ with exposure
-
Fluoride content in tea and its relationship with tea quality.
J Agric Food Chem. 2004 Jul 14;52(14):4472-6. Fluoride content in tea and its relationship with tea quality. Lu Y, Guo WF, Yang XQ. Department of Tea Science, Zhejiang University, 268 Kaixuan Road, Hangzhou 310027, People's Republic of China. Abstract: The tea plant is known as a fluorine accumulator. Fluoride (F) content in fresh leaves collected
Related FAN Content :
-