Abstract
Fluoride is often found in elevated concentrations in volcanic areas due to the release of magmatic fluorine as hydrogen fluorine through volcanic degassing. The exposure to high levels of fluoride can affect the processes of bone formation and resorption causing skeletal fluorosis, a pathology that can easily be mistaken for other skeletal diseases. In this study, we aimed to determine if fluoride concentration in the femoral bone of wild populations of the house mouse (Mus musculus) is a good biomarker of exposure to active volcanic environments naturally enriched in fluoride, allowing their use in biomonitoring programs. The fluoride concentration of the whole femoral bone of 9 mice from Furnas (5 males and 4 females) and 33 mice from Rabo de Peixe (16 males and 17 females) was measured by the potentiometric method with a fluoride ion selective electrode. Fluoride in bones was significantly higher in the mice from Furnas when compared with the mice from Rabo de Peixe (616.5?±?129.3??g?F/g vs. 253.8?±?10.5??g?F/g). Accumulation rates were also significantly higher in the mice collected in Furnas when compared with Rabo de Peixe individuals (3.84?±?0.52??g?F/day vs. 1.22?±?0.06??g?F/day). The results demonstrate a significant association between exposure to fluoride in the active volcanic environment and fluoride content in bone, revealing that bone fluoride concentration is a suitable biomarker of chronic environmental exposure to fluoride.
-
-
Skeletal fluorosis from brewed tea.
BACKGROUND: High fluoride ion (F(-)) levels are found in many surface and well waters. Drinking F(-)-contaminated water typically explains endemic skeletal fluorosis (SF). In some regions of Asia, however, poor quality "brick tea" also causes this disorder. The plant source of brick, black, green, orange pekoe, and oolong tea, Camellia
-
FRZB1 rs2242070 polymorphisms is associated with brick tea type skeletal fluorosis in Kazakhs, but not in Tibetans, China.
Skeletal fluorosis is a metabolic bone and joint disease caused by excessive accumulation of fluoride in the bones. Compared with Kazakhs, Tibetans are more likely to develop moderate and severe brick tea type skeletal fluorosis, although they have similar fluoride exposure. Single nucleotide polymorphisms (SNPs) in frizzled-related protein (FRZB) have
-
An Outbreak of Industrial Fluorosis in Cattle.
IT may be recalled that in the "Discussion on Fluorosis in Man and Animals" by this Section in February 19411 the occurrence of severe fluorosis in cattle was described on farms in the vicinity of brickworks in Bedfordshire. The purpose of the present communication is to report a similar occurrence
-
Reducing the off-target endocrinologic adverse effects of azole antifungals—can it be done?
Highlights Azole antifungals are associated with off-target endocrinologic adverse events. Skeletal fluorosis, pseudohyperaldosteronism, adrenal insufficiency, hyponatraemia and hypogonadism are reported. Clinical and biochemical monitoring may play a role in prevention and progression. Novel azoles offer therapeutic advantages due to greater selectivity of binding to fungal CYP51. Integration of pharmacogenomics
-
Skeletal fluorosis due to inhalation abuse of a difluoroethane-containing computer cleaner
Skeletal fluorosis (SF) is endemic in many countries and millions of people are affected worldwide, whereas in the United States SF is rare with occasional descriptions of unique cases. We report a 28-year-old American man who was healthy until two years earlier when he gradually experienced difficulty walking and an abnormal gait,
Related Studies :
-
-
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
Industrial Fluorosis
A highly significant relationship of exposure to fluoride was established with the frequency of back and neck surgery, fractures, symptoms of musculoskeletal disease and past history of diseases of bones and joints in the absence of the typical findings of skeletal fluorosis. Monitoring exposed workers for the early manifestations of "musculoskeletal fluorosis" is recommended prior to the development of destructive and degenerative changes of the skeleton.
-
Fluoride & Osteopetrosis
One of the most common radiological findings in skeletal fluorosis is osteosclerosis - a hardening of bones with a blurring of the trabecular structure. In advanced cases, the osteosclerotic form of fluorosis may closely resemble the appearance of osteopetrosis, a "marble bone" disease in which the bones are dense, but fragile and prone to fracture.
Related FAN Content :
-