Abstract
Due to many advantages Caenorhabditis elegans (C. elegans) has become a preferred model of choice in many fields, including neurodevelopmental toxicity studies. This review discusses the benefits of using C. elegans as an alternative to mammalian systems and gives examples of the uses of the nematode in evaluating the effects of major known neurodevelopmental toxins, including manganese, mercury, lead, fluoride, arsenic and organophosphorus pesticides. Reviewed data indicates numerous similarities with mammals in response to these toxins. Thus, C. elegans studies have the potential to predict possible effects of developmental neurotoxicants in higher animals, and may be used to identify new molecular pathways behind neurodevelopmental disruptions, as well as new toxicants.
*Free full-text study online at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520156/
-
-
Fluoride in Drinking Water: A Scientific Review of EPA’s Standards.
Excerpts: Summary Under the Safe Drinking Water Act, the U.S. Environmental Protection Agency (EPA) is required to establish exposure standards for contaminants in public drinking-water systems that might cause any adverse effects on human health. These standards include the maximum contaminant level goal (MCLG), the maximum contaminant level (MCL), and the secondary
-
Fluoride Exposure Affects Glutamine Uptake in Müller Glia Cells.
Fluoride, a pollutant present in contaminated ground water, oral care products, food, and pesticides, has deleterious effects in the structure and function of the central nervous system. Among the established neurological defects described in the exposed population, a reduced score in intelligence quotient tests in children of contaminated areas has
-
Neurotoxicity of fluoride: neurodegeneration in hippocampus of female mice
Light microscopic study of hippocampal sub-regions demonstrated significant number of degenerated nerve cell bodies in the CA3, CA4 and dentate gyrus(Dg) areas of sodium fluoride administered adult female mice. Ultrastructural studies revealed neurodegenrative characteristics like involution of cell membranes, swelling of mitochondria, clumping of chromatin material etc, can be observed in cell
-
Effects of different levels of calcium intake on brain cell apoptosis in fluorosis rat offspring and its molecular mechanism
The purpose of the investigation is to reveal the influence of dietary calcium on fluorosis-induced brain cell apoptosis in rat offspring, as well as the underlying molecular mechanism. Sprague-Dawley (SD) female rats were randomly divided into five groups: control group, fluoride group, low calcium, low calcium fluoride group, and high calcium
-
Fluoride exposure during early adolescence and its association with internalizing symptoms.
Highlights Adolescents with elevated urinary fluoride concentrations exhibit more somatization symptoms. Males may represent an at-risk population for fluoride-related internalizing behaviors. While somatization is typically comorbid with anxiety and depression, fluoride concentrations were not associated with increased depressive or anxiety symptoms. Background Early, chronic, low-level fluoride exposure has been linked to
Related Studies :
-
-
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
-
Fluoride's Direct Effects on Brain: Animal Studies
The possibility that fluoride ingestion may impair intelligence and other indices of neurological function is supported by a vast body of animal research, including over 40 studies that have investigated fluoride's effects on brain quality in animals. As discussed by the National Research Council, the studies have consistently demonstrated that fluoride, at widely varying concentrations, is toxic to the brain.
-
Fluoride: Developmental Neurotoxicity.
Developmental Neurotoxicity There has been a tremendous amount of research done on the association of exposure to fluoride with developmental neurotoxicity. There are over 60 studies reporting reduced IQ in children and several on the impaired learning/memory in animals. And there are studies which link fluoride to Attention Deficit Hyperactivity Disorder. Teaching
-
NRC (2006): Fluoride's Neurotoxicity and Neurobehavioral Effects
The NRC's analysis on fluoride and the brain.
-
Fluoride & IQ: 76 Studies
• As of July 18, 2022, a total of 85 human studies have investigated the relationship between fluoride and human intelligence. • Of these investigations, 76 studies have reported that elevated fluoride exposure is associated with reduced IQ in humans. • The studies which reported an association of reduced IQ with exposure
Related FAN Content :
-