Abstract
cAMP response element modulator (CREM) is involved in regulating gene expression in normal spermatogenesis. The transcriptional activity of CREM is partly regulated by activator of CREM in the testis (ACT). To investigate the effects of different concentrations of sodium fluoride (NaF) on the gene and protein expression of CREM and ACT in the mouse testis, sexually mature male Kunming mice were exposed to 50, 100, or 150 mg/L NaF in their drinking water for 90 days. NaF reduced the sperm count and viability and increased the percentage of malformed sperm in a dose-dependent manner. The mRNA expression of CREM and ACT was markedly downregulated in the NaF-treated groups. Furthermore, immunohistochemistry revealed that CREM and ACT proteins were decreased significantly in the 50, 100, and 150 mg/L NaF-treated groups compared to the control group. These findings indicate that the decreased gene and protein expression of CREM and ACT in the testis is associated with an impairment of reproductive functions by NaF.
-
-
Vitamin C and E supplementation can ameliorate NaF mediated testicular and spermatozoal DNA damages in adult Wistar rats.
Objective: Present study was designed to explore the efficacy of vitamin C and E (VC&VE) against fluoride mediated testicular, epididymal and spermatozoal anomalies. Materials and methods: Thirty two adult Wistar rats were divided into four groups. Group-I was control; Group-II received sodium fluoride (NaF) at 15 mg/kg/day
-
Role of IL-17 pathways in immune privilege: a RNA deep sequencing analysis of the mice testis exposure to fluoride
We sequenced RNA transcripts from the testicles of healthy male mice, divided into a control group with distilled water and two experimental groups with 50 and 100 mg/l NaF in drinking water for 56 days. Bowtie/Tophat were used to align 50-bp paired-end reads into transcripts, Cufflinks to measure the relative
-
Fluoride Compromises Testicular Redox Sensor, Gap Junction Protein, and Metabolic Status: Amelioration by Melatonin.
The excess fluoride intake has been shown to adversely affect male reproductive health. The aim of the present study was to investigate the key mechanism underlying fluoride-induced testicular dysfunction and the role of melatonin as a modulator of testicular metabolic, oxidative, and inflammatory load. The present results indicated that sodium
-
Testicular toxicity in sodium fluoride treated rats: association with oxidative stress
This study examined the effect of sodium fluoride, a water pollutant important through the world, including India, on testicular steroidogenic and gametogenic activities in relation to testicular oxidative stress in rats. Sodium fluoride treatment at 20mg/kg/day for 29 days by oral gavage resulted in significant diminution in the relative wet
-
Positive PCNA and Ki-67 Expression in the Testis Correlates with Spermatogenesis Dysfunction in Fluoride-Treated Rats.
The present study aimed to evaluate the effect of fluoride (F) on spermatogenesis in male rats. F- at 50 and 100 mg/L was administered for 70 days, after which the testicular and epididymis tissues were collected to observe the histopathological structure under a light microscope. The ultrastructure of the testis and sperm
Related Studies :
-
-
-
Fluoride's Effect on Male Reproductive System -- The "Sprando/Collins" Anomaly
In contrast to the findings of over 60 animal studies from other research teams, a series of studies by FDA researchers Sprando & Collins reported virtually no evidence of reproductive toxicity among animals treated with very high levels of fluoride exposure. The reasons for this discrepancy remains unclear. Excerpts from Sprando/Collins' Studies: "This study
-
Fluoride's Effect on Male Reproductive System - Human Studies
Consistent with in vitro and animal research, studies of human populations have reported associations between fluoride exposure and damage to the male reproductive system. Most notably, a scientist at the Food & Drug Administration reported in 1994 that populations in the United States with more than 3 ppm fluoride in their water had lower "total fertility rates" than populations with lower fluoride levels.
-
Fluoride's Effect on the Male Reproductive System -- In Vitro Studies
Carefully controlled in vitro studies have found that direct exposure of fluoride to the testes or semen inhibits testosterone production and damages sperm. While researchers have known since the 1930s that mega concentrations of fluoride can completely (but reversibly) immobilize sperm, it was not until the 1970s and 1980s that researchers found that relatively modest concentrations of fluoride could cause damage prior to complete immobilization.
-
Fluoride's Effect on Male Reproductive System: Animal Studies
Over 60 studies on animals (including rats, mice, roosters, and rabbits) have found that fluoride adversely impacts the male reproductive system. These studies have repeatedly found the following effects: (1) decreases in testosterone levels; (2) reduced sperm motility; (3) altered sperm morphology; (4) reduced sperm quantity; (5) increased oxidative stress; (6) and reduced capacity to breed.
Related FAN Content :
-