Abstract
Volatile anesthetic agents, such as sevoflurane, are increasingly used for long-term sedation in intensive care units worldwide, with improved clinical outcomes reported in recent studies due to favorable pharmacological properties. Despite possible renal toxicity related to the production of plasma inorganic fluoride and concerns related to reversible impairment of renal concentrating abilities, renal injury associated with sevoflurane sedation has rarely been reported in the intensive care unit setting. We hereby report 3 cases of nephrogenic diabetes insipidus associated with prolonged sevoflurane sedation using the AnaConDa device and review the possible mechanisms of renal toxicity.
-
-
Conceivable amelioration of NaF-induced toxicity in liver, kidney and brain of chicken by black tea extract: an in vitro study.
Sodium fluoride (NaF) toxicity on enzymatic and non-enzymatic oxidative stress markers of chicken liver, kidney and brain homogenate in in vitro condition where studied in present investigation. We studied alteration in the activity of superoxide dismutase (SOD), catalase (CAT), lipid peroxidation (LPO) and glutathione (GSH) content to study oxidative stress.
-
Pathological changes in the tissues of rats (albino) and monkeys (macaca radiata) in fluorine toxicosis
1. Stomach, duodenum, small intestine, kidney, liver, spleen, skin, heart, aorta, lungs, brain, pancreas, adrenals, thyroid and parathyroid of rats and monkeys suffering from chronic fluorosis have been histologically examined. 2. Fluorine has not been found to have any effect on the heart muscle, aorta, skin and parathyroids, whereas it has
-
Fluoride-induced histopathology and synthesis of stress protein in liver and kidney of mice
Selective low (15 mg sodium fluoride (NaF)/L) and relatively high (150 mg NaF/L) doses of in vivo fluoride (F) treatment to Swiss albino mice through drinking water elicited organ-specific toxicological response. All the F-exposed groups showed severe alterations in both liver and kidney architectures, but there was no significant change
-
Taurine ameliorates renal oxidative damage and thyroid dysfunction in rats chronically exposed to fluoride
Excessive exposure to fluoride poses several detrimental effects to human health particularly the kidney which is a major organ involved in its elimination from the body. The influence of taurine on fluoride-induced renal toxicity was investigated in a co-exposure paradigm for 45 days using five groups of eight rats each. Group I rats received
-
Changed cellular membrane lipid composition and lipid peroxidation of kidney in rats with chronic fluorosis
An animal model of chronic fluorosis was produced by subjecting Wistar rats to high doses of fluoride in drinking water for a prolonged period. Phospholipid and neutral lipid contents in rat kidney were then analyzed by high-performance liquid chromatography (HPLC), and fatty acid compositions from individual phospholipids were measured by
Related Studies :
-
-
-
Fluoride as a Cause of Kidney Disease in Humans
Because the kidney is exposed to higher concentrations of fluoride than all other soft tissues (with the exception of the pineal gland), there is concern that excess fluoride exposure may contribute to kidney disease - thus initiating a "vicious cycle" where the damaged kidneys increase the accumulation of fluoride, causing
-
Fluoride & Kidney Stones
It has long been suspected that fluoride may contribute to the formation of kidney stones. This suspicion has recently gained support from a study of an American man with skeletal fluorosis. According to the authors: "A new, important, medical problem (that seemed temporally related to cessation of fluoride exposure and subsequent negative calcium
-
Fluoridation of drinking water and chronic kidney disease: Absence of evidence is not evidence of absence
A fairly substantial body of research indicates that patients with chronic renal insufficiency are at an increased risk of chronic fluoride toxicity. Patients with reduced glomerular filtration rates have a decreased ability to excrete fluoride in the urine. These patients may develop skeletal fluorosis even at 1 ppm fluoride in the drinking water.
-
Kidney: A potential target for fluoride toxicity
The kidneys are the organ responsible for clearing fluoride from the body. In the process of doing so, the kidneys are exposed to concentrations of fluoride that exceed, by a factor of 50, the concentration of fluoride in human blood. As such, the kidney have long been considered a potential
-
Fluoride as a Cause of Kidney Disease in Animals
Because the kidney is exposed to higher concentrations of fluoride than all other soft tissues (with the exception of the pineal gland), there is concern that excess fluoride exposure may contribute to kidney disease - thus initiating a "vicious cycle" where the damaged kidneys increase the accumulation of fluoride, causing in
Related FAN Content :
-