Abstract
18F-sodium fluoride (NaF) is a PET bone imaging agent and is commonly used in imaging patients with cancer; however, similar to technetium-99m medronic acid (99mTc-MDP), it can be useful in the evaluation of benign bone and joint conditions. NaF is an excellent bone-seeking agent with high bone uptake due to rapid single-pass extraction. It has negligible plasma protein binding, rapid blood, renal clearance, high bone uptake and almost all NaF delivered is retained by bone after a single pass of blood; however, uptake of NaF can be observed in non-osseous structures such as the arterial vasculature, gastrointestinal tract, genitourinary tract, and viscera. In this article, we present a spectrum of clinical cases with non-osseous NaF uptake in patients referred for cancer staging.
-
-
Association of Dietary Calcium Intake with Dental, Skeletal and Non-Skeletal Fluorosis among Women in the Ethiopian Rift Valley.
Fluorosis is a major public health problem in the Rift Valley of Ethiopia. Low calcium (Ca) intake may worsen fluorosis symptoms. We assessed the occurrence of fluorosis symptoms among women living in high-fluoride (F) communities in South Ethiopia and their associations with dietary Ca intake. Women (n = 270) from
-
Environmental Fluoride 1977 by Rose & Marier
The Associate Committee on Scientific Criteria for Environmental Quality was established by the National Research Council of Canada in response to a mandate provided by the Federal Government to develop scientific guidelines for defining the quality of the environment. The concern of the NRC Associate Committee is strictly with scientific
-
Fluoride Sources, Toxicity and Fluorosis Management Techniques - A Brief Review.
Highlights Overexposure to fluoride via drinking water causes several health effects including fluorosis Endemic fluorosis is still persisted in several countries even with advancement in research Most of fluorosis management techniques suggested in the past have come with their own drawbacks Defluoridation techniques based on aluminium materials pose serious
-
Association between fluoride, magnesium, aluminum and bone quality in renal osteodystrophy
INTRODUCTION: Trace elements are known to influence bone metabolism; however, their effects may be exacerbated in renal failure because dialysis patients are unable to excrete excess elements properly. Our study correlated bone quality in dialysis patients with levels of bone fluoride, magnesium, and aluminum. A number of studies have linked
-
Fluoride exposure and CALCA methylation is associated with the bone mineral density of Chinese women.
Highlights Excessive fluoride exposure is positively related to CALCA methylation in women. CALCA methylation in Chinese women is negatively associated with BMD. Long-term excessive fluoride exposure is negatively related to BMD in women. BMD in women with CALCA hypermethylated is more susceptible to fluoride. The statistical associations are age-specific
Related Studies :
-
-
-
Skeletal Fluorosis & Individual Variability
One of the common fallacies in the research on skeletal fluorosis is the notion that there is a uniform level of fluoride that is safe for everyone in the population. These "safety thresholds" have been expressed in terms of (a) bone fluoride content, (b) daily dose, (c) water fluoride level, (d) urinary fluoride level, and (e) blood fluoride level. The central fallacy with each of these alleged safety thresholds, however, is that they ignore the wide range of individual susceptibility in how people respond to toxic substances, including fluoride.
-
Fluoride Exposure Aggravates the Impact of Iodine Deficiency
A consistent body of animal and human research shows that fluoride exposure worsens the impact of an iodine deficiency. Iodine is the basic building block of the T3 and T4 hormones and thus an adequate iodine intake is essential for the proper functioning of the thyroid gland. When iodine intake is inadequate during infancy and
-
Factors which increase the risk for skeletal fluorosis
The risk for developing skeletal fluorosis, and the course the disease will take, is not solely dependent on the dose of fluoride ingested. Indeed, people exposed to similar doses of fluoride may experience markedly different effects. While the wide range in individual response to fluoride is not yet fully understood, the following are some of the factors that are believed to play a role.
-
Dental Fluorosis & Enamel Hypoplasia in Children with Kidney Disease
Children with kidney disease are known to have high levels of fluoride in their blood and to be at risk for disfiguring tooth defects. Research suggests that high levels of fluoride in blood, which can cause the tooth defect known as dental fluorosis, can contribute to the defects that occur
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
Related FAN Content :
-