Abstract
Fluorosis and bone pathologies can be caused by chronic and/or excessive fluoride intake. Despite this, few studies have been conducted on the cellular mechanisms underlying osteoblast toxicity in the presence of NaF. Here, we investigated the effects of fluoride on MC3T3-E1 cells. We showed that the proliferation of MC3T3-E1 cells was inhibited by exposure to NaF. In addition, apoptosis was induced by NaF, as caspase-associated proteins showed a higher level of expression and apoptotic bodies were formed. Furthermore, endoplasmic reticulum (ER) stress induced by NaF activated the unfolded protein response (UPR) and upregulated the expression of the glucose-regulated proteins 94 (GRP94) and 78 (BiP). Therefore, ER stress plays a vital role in NaF-induced autophagy and apoptosis. Furthermore, apoptosis is promoted following the inhibition of NaF-induced autophagy. In conclusion, under NaF treatment, the ER stress-signaling pathway is activated, leading to apoptosis and autophagy and affecting the proliferation and survival of MC3T3-E1 cells.
-
-
Fluorosis induces endoplasmic reticulum stress and apoptosis in osteoblasts in vivo
The present study investigated the effects of fluoride on endoplasmic reticulum (ER) stress (ERS) and osteoblast apoptosis in vivo. Forty-eight Wistar rats were randomly divided into four groups (12/group) and exposed to 0, 50, 100, and 150 mg/L of fluoride in drinking water for 8 weeks, respectively. Peripheral blood samples and bilateral
-
Sodium fluoride induces apoptosis through the downregulation of hypoxia-inducible factor-1a in primary cultured rat chondrocytes
It has been reported that sodium fluoride (NaF) suppresses the proliferation and induces apoptosis of chondrocytes. However, the cellular and molecular mechanisms of the effect have not been elucidated. Therefore, the aim of this study was to evaluate the mechanisms of the effects of NaF on primary cultured rat chondrocytes
-
Fluorosilicic acid induces DNA damage and oxidative stress in bone marrow mesenchymal stem cells.
Highlights Fluorosilicic acid is the most used additive for water fluoridation. Dental fluorosis can be caused by fluorosilicic acid present in drinking water. DNA damage was caused by fluorosilicic acid in mesenchymal stem cells. Fluorosilicic acid altered bone mineralization in mesenchymal stem cells. DNA damage caused by fluorosilicic acid
-
Heterotrimeric G proteins as fluoride targets in bone (review).
Fluoride is an acknowledged bone anabolic agent. Nevertheless, a narrow therapeutic window and the adverse effects at higher therapeutic doses prevent broad clinical application of fluoride for treatment of diseases of bone loss, such as osteoporosis. The cellular and molecular mechanisms of fluoride action are poorly understood. Recent advances in
-
Effect of fluoride on expression of pura gene and CaM gene in newborn rat osteoblasts.
To explore the effect of fluoride (F) on the expression of purine-rich element-binding protein (PURA) gene and calmodulin (CaM) gene in osteoblasts of newborn rats, parietal calvaria bone osteoblast cultures of 48-hr-old rats were treated for 48 hr with sodium fluoride (NaF) at concentrations of 0 (control), 0.5, 2, and
Related Studies :
-
-
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
Related FAN Content :
-