Abstract
A number of epidemiological studies have reported that chronic exposure to high concentrations of fluoride not only causes dental and skeletal fluorosis but additionally affects serum levels of reproductive hormones. However, possible interaction between fluoride exposure and estrogen receptor alpha (ESR?) gene polymorphisms on sex hormone-binding globulin (SHBG) and androgen binding protein (ABP) of male farmers has not been detailed. Here, we conducted a cross-sectional study including 348 male farmers with different fluoride exposure levels from drinking water in Henan province of China to explore effects of fluoride exposure and ESR? genetic variation on serum SHBG and ABP levels. We found serum SHBG levels in male farmers from the high exposure group to be lower than those of the low exposure group. We also found that concentrations of SHBG affected ABP levels. Furthermore, fluoride exposure and single nucleotide polymorphisms at the XbaI and rs3798577 loci of the ESR? gene affected serum ABP levels. Our findings suggest that chronic fluoride exposure from drinking water is associated with alterations of serum SHBG and ABP concentrations in local male farmers and that the effect of fluoride exposure on ABP levels vary depending on ESR? gene polymorphisms.
-
-
Gene-environment interaction: Does fluoride influence the reproductive hormones in male farmers modified by ERa gene polymorphisms?
Highlights Adverse effect of fluoride exposure on human beings is a major public issue in China. Fluoride exposure significantly changed the serum level of estradiol in male farmers. Polymorphisms of ERa gene affected serum reproductive hormone levels in male. Gene-environment and gene-gene interactions on reproductive hormones were found. The occurrence of
-
Endemic fluorosis in Henan province, China: ERa gene polymorphisms and reproductive hormones among women
BACKGROUND AND OBJECTIVES: The aim of this study was to explore the influence of fluoride exposure and ERa gene polymorphisms on reproductive hormone concentrations of women in accordance with endemic fluorosis residence. METHODS AND STUDY DESIGN: A cross sectional study was conducted in Tongxu county, Henan Province, China. A total of
-
Effect of sodium fluoride on the sperm mitochondrial DNA in mice.
Previous studies demonstrated that fluoride, as a widespread environmental pollutant, induced the reproductive toxicity at high dose. Besides the decrease of sperm characteristics like concentration, survival, and sperm motility, it was found that high fluoride induced the destructive mitochondrial ultrastructure and decreased ATP production from mitochondrial respiration. However, whether fluoride
-
Sodium fluoride disrupts testosterone biosynthesis by affecting the steroidogenic pathway in TM3 Leydig cells.
Highlights NaF reduced cell viability and proliferation in TM3 Leydig cells. NaF decreased the free testosterone and cAMP levels in TM3 Leydig cells. NaF inhibited the expression levels of steroidogenic genes in Leydig cells. NaF repressed the expression levels of transcription factors in Leydig cells. Fluorine is an essential trace element
-
Fluoride decreased the sperm ATP of mice through inhabiting mitochondrial respiration
Fluoride-induced low sperm motility was observed in accumulated investigations. However, the effect of fluoride exposure on ATP generation which is essential to sperm motility remains to be elucidated. In this study, 120 healthy male mice were orally administrated with 0, 25, 50, and 100 mg L-1 NaF for 90 d. Results showed that
Related Studies :
-
-
-
Factors which increase the risk for skeletal fluorosis
The risk for developing skeletal fluorosis, and the course the disease will take, is not solely dependent on the dose of fluoride ingested. Indeed, people exposed to similar doses of fluoride may experience markedly different effects. While the wide range in individual response to fluoride is not yet fully understood, the following are some of the factors that are believed to play a role.
-
Dental Fluorosis & Enamel Hypoplasia in Children with Kidney Disease
Children with kidney disease are known to have high levels of fluoride in their blood and to be at risk for disfiguring tooth defects. Research suggests that high levels of fluoride in blood, which can cause the tooth defect known as dental fluorosis, can contribute to the defects that occur
-
Fluoridated Water Causes Severe Dental Fluorosis in Children with Diabetes Insipidus
This section on Diabetes includes: • Fluoride & Impaired Glucose Tolerance • Fluoride & Insulin • Fluoride Sensitivity Among Diabetics • Fluoridated Water Causes Severe Dental Fluorosis in Children with Diabetes Insipidus • NRC (2006): Fluoride’s Effect on Glucose Metabolism Excessive exposure to fluoride causes a defect of the tooth enamel known as dental fluorosis. In
-
Mayo Clinic: Fluoridation & Bone Disease in Renal Patients
The available evidence suggests that some patients wtih long-term renal failure are being affected by drinking water with as little as 2 ppm fluoride. The finding of adverse effects in patients drinking water with 2 ppm of fluoride suggests that a few similar cases may be found in patients imbibing 1 ppm, especially if large volumes are consumed, or in heavy tea drinkers. The finding of adverse effects in patients drinking water with 2 ppm of fluoride suggests that a few similar cases may be found in patients imbibing 1 ppm, especially if large volumes are consumed, or in heavy tea drinkers and if fluoride is indeed the cause. It would seem prudent, therefore, to monitor the fluoride intake of patients with renal failure living in high fluoride areas.
-
Kidney Patients Are at Increased Risk of Fluoride Poisoning
It is well established that individuals with kidney disease are susceptible to suffering bone damage and other ill effects from low levels of fluoride exposure. Kidney patients are at elevated risk because when kidneys are damaged they are unable to efficiently excrete fluoride from the body. As a result, kidney patients
Related FAN Content :
-