Abstract
Background
Environmental risk factors for dementia are poorly understood. Aluminium and fluorine in drinking water have been linked with dementia but uncertainties remain about this relationship.
Aims
In the largest longitudinal study in this context, we set out to explore the individual effect of aluminium and fluoride in drinking water on dementia risk and, as fluorine can increase absorption of aluminium, we also examine any synergistic influence on dementia.
Method
We used Cox models to investigate the association between mean aluminium and fluoride levels in drinking water at their residential location (collected 2005–2012 by the Drinking Water Quality Regulator for Scotland) with dementia in members of the Scottish Mental Survey 1932 cohort who were alive in 2005.
Results
A total of 1972 out of 6990 individuals developed dementia by the linkage date in 2012. Dementia risk was raised with increasing mean aluminium levels in women (hazard ratio per s.d. increase 1.09, 95% CI 1.03–1.15, P < 0.001) and men (1.12, 95% CI 1.03–1.21, P = 0.004). A dose-response pattern of association was observed between mean fluoride levels and dementia in women (1.34, 95% CI 1.28–1.41, P < 0.001) and men (1.30, 95% CI 1.22–1.39, P < 0.001), with dementia risk more than doubled in the highest quartile compared with the lowest. There was no statistical interaction between aluminium and fluoride levels in relation with dementia.
Conclusions
Higher levels of aluminium and fluoride were related to dementia risk in a population of men and women who consumed relatively low drinking-water levels of both.
Original abstract online at https://www.cambridge.org/core/journals/the-british-journal-of-psychiatry/article/aluminium-and-fluoride-in-drinking-water-in-relation-to-later-dementia-risk/14AF4F22AC68C9D6F34F9EC91BE37B6D
-
References
- Livingston, G, Sommerlad, A, Orgeta, V, Costafreda, SG, Huntley, J, Ames, D, et al. Dementia prevention, intervention, and care. Lancet; 390(10113): 2673–734. CrossRef | Google Scholar
- Russ, TC, Gatz, M, Pedersen, NL, Hannah, J, Wyper, G, Batty, GD, et al. Geographical variation in dementia: examining the role of environmental factors in Sweden and Scotland. Epidemiology 2015; 26(2): 263–70. CrossRef | Google Scholar | PubMed
- Mokry, LE, Ross, S, Morris, JA, Manousaki, D, Forgetta, V, Richards, JB. Genetically decreased vitamin D and risk of Alzheimer disease. Neurology 2016; 87(24): 2567–74. CrossRef | Google Scholar | PubMed
- Killin, LO, Starr, JM, Shiue, IJ, Russ, TC. Environmental risk factors for dementia: a systematic review. BMC Geriatr 2016; 16(1): 175. CrossRef | Google Scholar | PubMed
- Cacciottolo, M, Wang, X, Driscoll, I, Woodward, N, Saffari, A, Reyes, J, et al. Particulate air pollutants, APOE alleles and their contributions to cognitive impairment in older women and to amyloidogenesis in experimental models. Transl Psychiatry 2017; 7: e1022. CrossRef | Google Scholar | PubMed
- Scottish Water. Your Water Quality Explained. Scottish Water, 2015 (https://www.scottishwater.co.uk/assets/domestic/files/you%20and%20your%20home/water%20quality/swyourwaterquality2015.pdf). Google Scholar
- World Health Organization. Guidelines for Drinking-Water Quality (4th edn). World Health Organization, 2011. Google Scholar
- Kawahara, M, Kato-Negishi, M. Link between aluminum and the pathogenesis of Alzheimer’s disease: the integration of the aluminum and amyloid cascade hypotheses. Int J Alzheimer’s Dis 2011; 2011: 276393. Google Scholar | PubMed
- Rondeau, V, Jacqmin-Gadda, H, Commenges, D, Helmer, C, Dartigues, J-F. Aluminum and silica in drinking water and the risk of Alzheimer’s disease or cognitive decline: findings from 15-year follow-up of the PAQUID cohort. Am J Epidemiol 2008; 169(4): 489–96. CrossRef | Google Scholar | PubMed
- Lubkowska, A, Zyluk, B, Chlubeka, D. Interactions between fluorine and aluminum. Fluoride 2002; 35(2): 73–7. Google Scholar
- Deary, IJ, Whalley, LJ, Starr, JM. A Lifetime of Intelligence: Follow-Up Studies of the Scottish Mental Surveys of 1932 and 1947. American Psychological Association, 2009. CrossRef | Google Scholar
- World Health Organization. Manual of the International Classification of Diseases, Injuries, and Causes of Death, Ninth Revision (ICD-9). WHO, 1977. Google Scholar
- World Health Organization. The ICD-10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines. WHO, 1992. Google Scholar
- SIMD. 2012 Technical Notes. Scottish Government, 2012 (https://www2.gov.scot/Resource/0050/00504822.pdf). Google Scholar
- Doubal, FN, Ali, M, Batty, GD, Charidimou, A, Eriksdotter, M, Hofmann-Apitius, M, et al. Big data and data repurposing – using existing data to answer new questions in vascular dementia research. BMC Neurol 2017; 17(1): 72. CrossRef | Google Scholar | PubMed
- Russ, TC, Hannah, J, Batty, GD, Booth, CC, Deary, IJ, Starr, JM. Childhood cognitive ability and incident dementia: the 1932 Scottish Mental Survey Cohort into their 10th Decade. Epidemiology 2017; 28(3): 361–4. CrossRef | Google Scholar | PubMed
- Altmann, P, Cunningham, J, Dhanesha, U, Ballard, M, Thompson, J, Marsh, F. Disturbance of cerebral function in people exposed to drinking water contaminated with aluminium sulphate: retrospective study of the Camelford water incident. BMJ 1999; 319(7213): 807–11. CrossRef | Google Scholar | PubMed
- Still, CN, Kelley, P. On the incidence of primary degenerative dementia vs. water fluoride content in South Carolina. Neurotoxicology 1980; 1(4): 125–31. Google Scholar
- Verstraeten, SV, Aimo, L, Oteiza, PI. Aluminium and lead: molecular mechanisms of brain toxicity. Arch Toxicol 2008; 82(11): 789–802. CrossRef | Google Scholar | PubMed
- Matthews, FE, Arthur, A, Barnes, LE, Bond, J, Jagger, C, Robinson, L, et al. A two-decade comparison of prevalence of dementia in individuals aged 65 years and older from three geographical areas of England: results of the Cognitive Function and Ageing Study I and II. Lancet 2013; 382(9902): 1405–12. CrossRef | Google Scholar | PubMed
- Russ, TC, Batty, GD, Starr, JM. Cognitive and behavioural predictors of survival in Alzheimer disease: results from a sample of treated patients in a tertiary-referral memory clinic. Int J Geriatr Psychiatry 2012; 27(8): 844–53. CrossRef | Google Scholar
- Russ, TC, Parra, MA, Lim, AE, Law, E, Connelly, PJ, Starr, JM. Prediction of general hospital admission in people with dementia: cohort study. Br J Psychiatry 2015; 206(2): 153–9. CrossRef | Google Scholar | PubMed
- Sudlow, C, Gallacher, J, Allen, N, Beral, V, Burton, P, Danesh, J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 2015; 12(3): e1001779. CrossRef | Google Scholar | PubMed
- Wu, Y-T, Fratiglioni, L, Matthews, FE, Lobo, A, Breteler, MM, Skoog, I, et al. Dementia in western Europe: epidemiological evidence and implications for policy making. Lancet Neurol 2016; 15(1): 116–24. CrossRef | Google Scholar | PubMed
- Bradford Hill, A. The environment and disease: association or causation? Proc R Soc Med 1965; 58: 295–300. Google Scholar
- Calvin, CM, Batty, GD, Der, G, Brett, CE, Taylor, A, Pattie, A, et al. Childhood intelligence in relation to major causes of death in 68 year follow-up: prospective population study. BMJ 2017; 357: j2708. CrossRef | Google Scholar | PubMed
- McGurn, B, Deary, IJ, Starr, JM. Childhood cognitive ability and risk of late-onset Alzheimer and vascular dementia. Neurology 2008; 71(14): 1051–6. CrossRef | Google Scholar | PubMed
- Whalley, LJ, Starr, JM, Athawes, R, Hunter, D, Pattie, A, Deary, IJ. Childhood mental ability and dementia. Neurology 2000; 55(10): 1455–9. CrossRef | Google Scholar | PubMed
- Duan, Q, Jiao, J, Chen, X, Wang, X. Association between water fluoride and the level of children’s intelligence: a dose–response meta-analysis. Public Health 2018; 154: 87–97. CrossRef | Google Scholar | PubMed
-
-
Using drawing tests to measure intelligence in children from areas impacted by combined Al-F endemic toxicosis (Shuicheng, Guizhou).
Measurements of intelligence via drawing tests have been conducted to examine the intelligence development of children from regions affected by combined AIF endemic toxicosis. A selected number of 196 children between 6.5 and 12 years of age participated in the testing. Across all age groups, the average IQ level of children from
-
Paradoxes of fluoride toxicity
Numerous literature sources reveal evidence that fluoride affects the activities of numerous enzymes in vitro as well as in vivo. Millions of people live in endemic fluoride areas with a severe public health problem. A plethora of data suggest that fluoride should be recognized as a developmental neurotoxicant for humans.
-
Fluoride Sources, Toxicity and Fluorosis Management Techniques - A Brief Review.
Highlights Overexposure to fluoride via drinking water causes several health effects including fluorosis Endemic fluorosis is still persisted in several countries even with advancement in research Most of fluorosis management techniques suggested in the past have come with their own drawbacks Defluoridation techniques based on aluminium materials pose serious
-
Effects of chronic fluorosis on the brain.
Highlights Reviewing the mechanism of brain injury caused by chronic fluorosis is of great significance for protecting residents in fluorosis endemic areas. Abstract This article reviews the effects of chronic fluorosis on the brain and possible mechanisms. We used PubMed, Medline and Cochraine databases to collect data on fluorosis, brain injury,
-
Components of Drinking Water and Risk of Cognitive Impairment in the Elderly.
The relation between aluminum, fluorine, calcium, and pH in drinking water and the risk for cognitive impairment was studied using data collected in 1988-1989 in a population-based survey of 3,777 French men and women aged 65 years and older (the Paquid study). Cognitive impairment was defined as a score lower
Related Studies :
-
-
-
Kidney Patients Are at Increased Risk of Fluoride Poisoning
It is well established that individuals with kidney disease are susceptible to suffering bone damage and other ill effects from low levels of fluoride exposure. Kidney patients are at elevated risk because when kidneys are damaged they are unable to efficiently excrete fluoride from the body. As a result, kidney patients
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
-
Fluoridation of drinking water and chronic kidney disease: Absence of evidence is not evidence of absence
A fairly substantial body of research indicates that patients with chronic renal insufficiency are at an increased risk of chronic fluoride toxicity. Patients with reduced glomerular filtration rates have a decreased ability to excrete fluoride in the urine. These patients may develop skeletal fluorosis even at 1 ppm fluoride in the drinking water.
-
Fluoride's Effect on Fetal Brain
The human placenta does not prevent the passage of fluoride from a pregnant mother's bloodstream to the fetus. As a result, a fetus can be harmed by fluoride ingested pregnancy. Based on research from China, the fetal brain is one of the organs susceptible to fluoride poisoning. As highlighted by the excerpts
-
Annapolis: Water Fluoridation Linked to Death of Dialysis Patient
EVENING CAPITAL (Annapolis, Maryland) November 29, 1979 Fluoride Linked to Death by Mary Ann Kryzankowicz Staff Writer Fluoride poisoning has been definitely linked to the death of a 65-year-old kidney dialysis patient who became ill during a blood cleaning process Nov 11. State Medical Examiner Dr. (illegible) Guard has ruled that Lawrence Blake, 65, of Arundel
Related FAN Content :
-