Abstract
Long-term natural geochemical processes result in wide occurrence of fluoride contamination in underground water and fluoride exposure via drinking water for over 500 million people globally. The control of fluoride pollution and fluorosis is one of the most important issues for drinking water safety. In the past several decades, many initiatives failed in defluoridation of water. Better understanding of fluoride occurrence mechanisms in underground water chemistry and the prediction of high-risk areas by geographic information and remote sensing are of crucial importance to minimize fluorosis occurrence. The use of alternative source water or blending should be considered as priority option. Much efforts should be devoted to the fundamental studies on defluoridation reagents and innovative materials, and to the development of highly-efficient, economic, easy-to-handle and stable technologies and integrated instruments. Furthermore, the design, construction, operation, and supervision of defluoridation facilities should be carefully evaluated and strengthened to achieve stable benefits as much as possible.
-
-
The pathogenesis of endemic fluorosis: Research progress in the last 5 years.
Fluorine is one of the trace elements necessary for health. It has many physiological functions, and participates in normal metabolism. However, fluorine has paradoxical effects on the body. Many studies have shown that tissues and organs of humans and animals appear to suffer different degrees of damage after long-term direct
-
Health risk in children to fluoride exposure in a typical endemic fluorosis area on Loess Plateau, north China, in the last decade
Highlights Fluoride concentrations were 0.55 mg L-1 in 3427 water consumption points in Shanxi Province. Health risks were assessed for children consumers regarding fluoride exposure. Approximately 10%, 1.3% and 0.06% children are at risk for dental decay, dental and skeletal fluorosis, respectively. The fluoride concentrations were being decreased significantly from
-
[Epidemiology and clinical study of endemic fluorosis in a village that has improved water for 40 years].
Objective: To investigate the control effect of water improvement for endemic fluorosis over a long period of time, the health status of the residents in the disease area and the restoration to health of endemic fluorosis patients. Methods: It was investigated that the water improvement lasting for 40 years and the rate
-
A national cross-sectional study on effects of fluoride-safe water supply on the prevalence of fluorosis in China
OBJECTIVE: To assess the effects of provided fluoride-safe drinking-water for the prevention and control of endemic fluorosis in China. DESIGN: A national cross-sectional study in China. SETTING: In 1985, randomly selected villages in 27 provinces (or cities and municipalities) in 5 geographic areas all over China. PARTICIPANTS: Involved 81 786 children aged from
-
Impact of Community Defluoridation on a Village Endemic for Hydric Fluorosis in Rural Karnataka, India.
Introduction: Excessive intake of fluorides can lead to the development of fluorosis, a serious public health issue in India. The objective of this study was to assess the impact of community defluoridation in preventing fluorosis in Kaiwara village. Methodology: This community interventional trial was conducted in Kaiwara
Related Studies :
-
-
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
Dental Fluorosis Impacts Dentin in Addition to Enamel
Dental fluorosis is a mineralization defect of tooth enamel marked by increased subsurface porosity. The enamel, however, is not the only component of teeth that is effected. As several studies have demonstrated, dental fluorosis can also impair the mineralization of dentin as well. As noted in one review: "The fact that
-
Fluoride & Osteomalacia
One of fluoride's most well-defined effects on bone tissue is it's ability to increase the osteoid content of bone. Osteoid is unmineralized bone tissue. When bones have too much of it, they become soft and prone to fracture -- a condition known as osteomalacia. As shown below, fluoride has repeatedly been
Related FAN Content :
-