Abstract
Long-term natural geochemical processes result in wide occurrence of fluoride contamination in underground water and fluoride exposure via drinking water for over 500 million people globally. The control of fluoride pollution and fluorosis is one of the most important issues for drinking water safety. In the past several decades, many initiatives failed in defluoridation of water. Better understanding of fluoride occurrence mechanisms in underground water chemistry and the prediction of high-risk areas by geographic information and remote sensing are of crucial importance to minimize fluorosis occurrence. The use of alternative source water or blending should be considered as priority option. Much efforts should be devoted to the fundamental studies on defluoridation reagents and innovative materials, and to the development of highly-efficient, economic, easy-to-handle and stable technologies and integrated instruments. Furthermore, the design, construction, operation, and supervision of defluoridation facilities should be carefully evaluated and strengthened to achieve stable benefits as much as possible.
-
-
Occurrence of fluorosis in endemic forms in Hyderabad state.
FIRST PAGE OF PAPER All animal tissues and plants contain fluorine in very small amounts. It is found in soils, rocks and water. No convincing evidence has been as yet produced to show that it performs any useful function in animal nutrition, or that it is essential for animal metabolism. During the
-
Endemic Fluorosis. (An Epidemiológical, Biochemical and Clinical Study in the Bhatinda District of Punjab).
Earlier observations and a review on endemic fluorosis in the Bhatinda District of Punjab were published in 1961 [this Bulletin, 1962, v. 37, 243] and the object of the present paper "is to summarize our epidemiological work done over three years and to emphasize the importance of this work from
-
The impact of the hyperacid Ijen Crater Lake: risks of excess fluoride to human health.
The Asembagus irrigation area (East Java, Indonesia) receives a high input of fluoride (F) via surface water that partially originates from the hyperacid crater lake of the Ijen volcano. Endemic dental fluorosis among local residents has been ascribed to F in water wells. In this study, the total F intake
-
Prevalence of fluorosis in Pratabpura and Surajpura villages, District Ajmer (Rajasthan).
HEEP COPYRIGHT: BIOL ABS. In a study of 357 individuals at Pratabpura and Surajpura villages in Ajmer district, Rajasthan, where (F-) contents in water were 14.3 and 13.9 mg/l, respectively, dental fluorosis was present in 280 (83.5%). Males were slightly more (87.56%) affected than females (78.66%). Of children below 15
-
Epidemiological, clinical, and biochemical study of endemic dental and skeletal fluorosis in Punjab
The incidence of dental fluorosis in 46,000 children in the Punjab was assessed and compared with the fluoride content of their water supplies. Ten villages were selected for more detailed studies of skeletal as well as dental fluorosis. Factors other than the fluoride content of the drinking water which were found to influence
Related Studies :
-
-
-
"Pre-Skeletal" Fluorosis
As demonstrated by the studies below, skeletal fluorosis may produce adverse symptoms, including arthritic pains, clinical osteoarthritis, gastrointestinal disturbances, and bone fragility, before the classic bone change of fluorosis (i.e., osteosclerosis in the spine and pelvis) is detectable by x-ray. Relying on x-rays, therefore, to diagnosis skeletal fluorosis will invariably fail to protect those individuals who are suffering from the pre-skeletal phase of the disease. Moreover, some individuals with clinical skeletal fluorosis will not develop an increase in bone density, let alone osteosclerosis, of the spine. Thus, relying on unusual increases in spinal bone density will under-detect the rate of skeletal fluoride poisoning in a population.
-
Skeletal Fluorosis: The Misdiagnosis Problem
It is a virtual certainty that there are individuals in the general population unknowingly suffering from some form of skeletal fluorosis as a result of a doctor's failure to consider fluoride as a cause of their symptoms. Proof that this is the case can be found in the following case reports of skeletal fluorosis written by doctors in the U.S. and other western countries. As can be seen, a consistent feature of these reports is that fluorosis patients--even those with crippling skeletal fluorosis--are misdiagnosed for years by multiple teams of doctors who routinely fail to consider fluoride as a possible cause of their disease.
-
Fluoride & Osteoarthritis
While the osteoarthritic effects that occurred from fluoride exposure were once considered to be limited to those with skeletal fluorosis, recent research shows that fluoride can cause osteoarthritis in the absence of traditionally defined fluorosis. Conventional methods used for detecting skeletal fluorosis, therefore, will fail to detect the full range of people suffering from fluoride-induced osteoarthritis.
-
Fluoride Magnifies Impact of Repetitive Stress on Joints
Research has repeatedly found that fluoride's effect on the skeleton is most pronounced in the bones and joints that undergo the greatest strain. Indeed, both the symptoms of fluorosis (i.e., joint pain and stiffness) as well as the radiological findings (e.g., exostoses, interosseuous membrane calcification) have been found to occur earliest, and most severely, in the joints
-
Estimated "Threshold" Doses for Skeletal Fluorosis
For over 40 years health authorities stated that in order to develop crippling skeletal fluorosis, one would need to ingest between 20 and 80 mg of fluoride per day for at least 10 or 20 years. This belief, however, which played an instrumental role in shaping current fluoride policies, is now acknowledged by the National Academy of Sciences (NAS) and other US health authorities to be incorrect.
Related FAN Content :
-