Fluoride Action Network


The excess fluoride intake has been shown to adversely affect male reproductive health. The aim of the present study was to investigate the key mechanism underlying fluoride-induced testicular dysfunction and the role of melatonin as a modulator of testicular metabolic, oxidative, and inflammatory load. The present results indicated that sodium fluoride (NaF) exposure to adult male golden hamsters severely impairs reproductive physiology as evident from markedly reduced sperm count/viability, testosterone level, androgen receptor (AR), testicular glucose transporter (GLUT-1), gap junction (connexin-43), and survival (Bcl-2) protein expression. NaF exposure markedly increased testicular oxidative load, inflammatory (NF-kB/COX-2), and apoptotic (caspase-3) protein expression. However, melatonin treatment remarkably restored testicular function as evident by normal histoarchitecture, increased sperm count/viability, enhanced antioxidant enzyme activities (SOD and Catalase), and decreased lipid peroxidation (LPO) level. In addition, melatonin treatment upregulated testicular Nrf-2/HO-I, SIRT-1/ FOXO-1, and downregulated NF-kB/COX-2 expression. Further, melatonin ameliorated NaF-induced testicular metabolic stress by modulating testicular GLUT-1expression, glucose level, and LDH activity. Furthermore, melatonin treatment enhanced testicular PCNA, Bcl-2, connexin-43, and reduced caspase-3 expression. In conclusion, we propose the molecular mechanism of fluoride-induced testicular damages and ameliorative action(s) of melatonin.


  1. Ali S, Thakur SK, Sarkar A, Shekhar S (2016) Worldwide contamination of water by fluoride. Environ Chem Lett 14:291–315.  https://doi.org/10.1007/s10311-016-0563-5 CrossRefGoogle Scholar
  2. Mukherjee I, Singh UK (2018) Groundwater fluoride contamination, probable release, and containment mechanisms: a review on Indian context. Environ Geochem Health 40:2259–2301CrossRefGoogle Scholar
  3. Aitken, Roman (2008) Antioxidant systems and oxidative stress in the testes. Oxidative Med Cell Longev 1:15–24CrossRefGoogle Scholar
  4. Sun Z, Li S, Guo Z, Li R, Wang J, Niu R, Wang J (2018) Effects of Fluoride on SOD and CAT in testes and epididymes of mice. Biol Trace Elem Res 184(1):148–153.  https://doi.org/10.1007/s12011-017-1181-1 CrossRefPubMedGoogle Scholar
  5. Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J (2016) Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci 73(17):3221–3247.  https://doi.org/10.1007/s00018-016-2223-0 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Liang M, Wang Z, Li H, Cai L, Pan J, He H et al (2018) l-Arginine induces antioxidant response to prevent oxidative stress via stimulation of glutathione synthesis and activation of Nrf2 pathway. Food Chem Toxicol 115:315–328.  https://doi.org/10.1016/j.fct.2018.03.029 CrossRefPubMedGoogle Scholar
  7. Franco R, Navarro G, Martinez-Pinilla E (2019) Antioxidant defense mechanisms in erythrocytes and in the central nervous system. J Antioxid 8(2):E46.  https://doi.org/10.3390/antiox8020046 CrossRefGoogle Scholar
  8. Luo Q, Cui H, Deng H, Kuang P, Liu H, Lu Y et al (2017) Sodium fluoride induces renal inflammatory responses by activating NF-kappaB signaling pathway and reducing anti-inflammatory cytokine expression in mice. J Oncotarget 8(46):80192–80207.  https://doi.org/10.18632/oncotarget.19006 CrossRefGoogle Scholar
  9. Ameeramja J, Perumal E (2018) Possible modulatory effect of tamarind seed coat extract on fluoride-induced pulmonary inflammation and fibrosis in rats. J Inflamm 41(3):886–895CrossRefGoogle Scholar
  10. Chen L, Kuang P, Liu H, Wei Q, Cui H, Fang J et al (2019) Sodium fluoride (NaF) induces inflammatory responses via activating MAPKs/NF-kappaB signaling pathway and reducing anti-inflammatory cytokine expression in the mouse liver. Biol Trace Elem Res 189(1):157–171.  https://doi.org/10.1007/s12011-018-1458-z CrossRefPubMedGoogle Scholar
  11. Han J, Pan XY, Xu Y, Xiao Y, An Y, Tie L et al (2012) Curcumin induces autophagy to protect vascular endothelial cell survival from oxidative stress damage. Autophagy 8(5):812–825.  https://doi.org/10.4161/auto.19471 CrossRefPubMedGoogle Scholar
  12. Tatone C, Emidio D, Barbonetti G, Carta A, Luciano G, Falone AM, Amicarelli F (2018) Sirtuins in gamete biology and reproductive physiology: emerging roles and therapeutic potential in female and male infertility. Hum Reprod Update 24(3):267–289.  https://doi.org/10.1093/humupd/dmy003 CrossRefPubMedGoogle Scholar
  13. Qiang L, Sample A, Liu H, Wu X, He YY (2017) Epidermal SIRT1 regulates inflammation, cell migration, and wound healing. Sci Rep 7(1):14110.  https://doi.org/10.1038/s41598-017-14,371-3 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Shah SA, Khan M, Jo MH, Jo MG, Amin FU, Kim MO (2017) Melatonin Stimulates the SIRT-1/Nrf2 signaling pathway counteracing lipopolysaccharide (LPS)- induced oxidative stress to rescue postnatal rat brain. CNS Neurosci Ther 23(1):33–44.  https://doi.org/10.1111/cns.12588 CrossRefPubMedGoogle Scholar
  15. Rato L, Alves MG, Socorro S, Duarte AI, Cavaco JE, Oliveira PF (2012) Metabolic regulation is important for spermatogenesis. Nat Rev Urol 9:330–33,877CrossRefGoogle Scholar
  16. Oliveira PF, Martins AD, Moreira AC, Cheng CY, Alves MG (2015) The Warburg effect revisited—lesson from the Sertoli cell. Med Res Rev 35:126–151CrossRefGoogle Scholar
  17. Kopera IA, Bilinska B, Cheng CY, Mruk DD (2010) Sertoli-germ cell junctions in the testis: a review of recent data. Philos Trans R Soc Lond Ser B Biol Sci 365(1546):1593–1605.  https://doi.org/10.1098/rstb.2009.0251 CrossRefGoogle Scholar
  18. Kidder GM, Cyr DG (2016) Roles of connexins in testis development and spermatogenesis. Semin Cell Dev Biol 50:22–30.  https://doi.org/10.1016/j.semcdb.2015.12.019 CrossRefPubMedGoogle Scholar
  19. Kristina R, Karola W, Damm OS, Wistuba J, Langeheine M, Brehm R (2018) Loss of connexin 43 in Sertoli cells provokes postnatal spermatogonial arrest, reduced germ cell numbers and impaired spermatogenesis. Reprod Biol 18(4):456–466CrossRefGoogle Scholar
  20. Pointis G, Gillerona J, Caretteab D, Segretainb D (2015) Testicular connexin 43, a precocious molecular target for the effect of environmental toxicants on male fertility. Spermatogenesis 4:303–317Google Scholar
  21. Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L (2016) Melatonin as an antioxidants: under promiises but over delivers. J Pineal Res 61(3):253–278.  https://doi.org/10.1111/jpi.12360 CrossRefPubMedGoogle Scholar
  22. Galano A, Tan DX, Reiter RJ (2018) Melatonin: a versatile protector against oxidative DNA damage. Molecules 23(3):E530.  https://doi.org/10.3390/molecules23030530 CrossRefPubMedGoogle Scholar
  23. Zhao L, Liu H, Yue L, Zhang J, Li X, Wang B et al (2017) Melatonin attenuates early brain injury via the melatonin receptor/Sirt1/NF-kappaB signaling pathway following subarachnoid hemorrhage in mice. Mol Neurobiol 54(3):1612–1621.  https://doi.org/10.1007/s12035-016-9776-7 CrossRefPubMedGoogle Scholar
  24. Bai XZ, He T, Gao JX, Liu Y, Liu JQ, Han SC, Hu DH (2016) Melatonin prevents acute kidney injury in severely burned rats via the activation of SIRT1. Sci Rep 6:32199.  https://doi.org/10.1038/srep32199 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Rastogi S, Haldar C (2018) Comparative effect of melatonin and quercetin in counteracting LPS induced oxidative stress in bone marrow mononuclear cells and spleen of Funambulus pennanti. Food Chem Toxicol 120:243–252.  https://doi.org/10.1016/j.fct.2018.06.062 CrossRefPubMedGoogle Scholar
  26. Lu Y, Luo Q, Cui H, Deng H, Kuang P, Liu H et al (2017) Sodium fluoride causes oxidative stress and apoptosis in the mouse liver. J Aging 9(6):1623–1639.  https://doi.org/10.18632/aging.101257 CrossRefGoogle Scholar
  27. Guo Y, Sun J, Li T, Zhang Q, Bu S, Wang Q, Lai D (2017) Melatonin ameliorates restraint stress- induced oxidative stress and apoptosis in testicular cells via NF-kappaB/iNOS and Nrf2/ HO-1 signaling pathway. Sci Rep 7(1):9599CrossRefGoogle Scholar
  28. Mukherjee A, Haldar C, Vishwas DK (2014) Melatonin prevents dexamethasone-induced testicular oxidative stress and germ cell apoptosis in golden hamster, Mesocricetus auratus. Int J Androl xx:1–12Google Scholar
  29. Singh S, Singh SK (2018) Chronic exposure to perfluorononanoic acid impairs spermatogenesis, steroidogenesis and fertility in male mice. J Appl Toxicol 39(3):420–431CrossRefGoogle Scholar
  30. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  31. Das K, Samanta L, Chainy NBG (1999) A modified spectrophotometric assay of su-peroxide dismutase using nitrite formation by superoxide radicals. Ind J Biochem Biophys 37:201–204Google Scholar
  32. Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394CrossRefGoogle Scholar
  33. Ohkawa H, Ohishi N, Yagi K (1978) Reaction of linoleic acid hydroperoxide with thiobarbuteric acid. J Lipid Res 19:1053–1057PubMedGoogle Scholar
  34. Tanishima K, Gao SX, Yamamoto R, Yoshida H (1995) Biochemical and enzymological study of lactate dehydrogenase isoenzymes from commercial quality control sera and several animal tissue sources. Eur J Clin Chem Clin 33:865–868Google Scholar
  35. Verma R, Haldar C (2016) Photoperiodic modulation of thyroid hormone receptor (TR-?), deiodinase-2 (Dio-2) and glucose transporters (GLUT 1 and GLUT 4) expression in testis of adult golden hamster, Mesocricetus auratus. J Photochem Photobiol 165:351–358CrossRefGoogle Scholar
  36. Singh S, Singh SK (2019) Prepubertal exposure to perfluorononanoic acid interferes with spermatogenesis and steroidogenesis in male mice. Ecotoxicol Environ Saf 170:590–599.  https://doi.org/10.1016/j.ecoenv.2018.12.034 CrossRefPubMedGoogle Scholar
  37. Zhang S, Niu Q, Gao H, Ma R, Lei R, Zhang C, Xia T, Li P, Xu C, Wang C, Chen J, Dong L, Zhao Q, Wang A (2016) Excessive apoptosis and defective autophagy contribute to developmental testicular toxicity induced by fluoride. Environ Pollut 212:97–104CrossRefGoogle Scholar
  38. Mima M, Greenwald D, Ohlander S (2018) Environmental toxins and male fertility. Curr J Urol Rep 19(7):50CrossRefGoogle Scholar
  39. Zhang S, Jiang C, Liu H, Guan Z, Zeng Q, Zhang C et al (2013) Fluoride-elicited developmental testicular toxicity in rats: roles of endoplasmic reticulum stress and inflammatory response. Toxicol Appl Pharmacol 271(2):206–215.  https://doi.org/10.1016/j.taap.2013.04.033 CrossRefPubMedGoogle Scholar
  40. Smith LB, Walker WH (2014) The regulation of spermatogenesis by androgens. Semin Cell Dev Biol 30:2–13CrossRefGoogle Scholar
  41. Asadi N, Bahmani M, Kheradmand A, Rafieian-Kopaei M (2017) The impact of oxidative stress on testicular function and the role of antioxidants in improving it: a review. J Clin Diagn Res 11(5):IE01–IE05PubMedPubMedCentralGoogle Scholar
  42. Cardoso JP, Cocuzza M, Elterman D (2019) Optimizing male fertility: oxidative stress and the use of antioxidants. World J Urol 37(6):1029–1034CrossRefGoogle Scholar
  43. Jenwitheesuk A, Boontem P, Wongchitrat P, Tocharus J, Mukda S, Govitrapong P (2017) Melatoninregulatestheaging mouse hippocampal homeostasis via the sirtuin1-FOXO1 pathway. J Exp Clin Sci 16:340–353.  https://doi.org/10.17179/excli2016-852 CrossRefGoogle Scholar
  44. Rocha CS, Martins AD, Rato L, Silva BM, Oliveira PF, Alves MG (2014) Melatonin alters the glycolytic profile of Sertoli cells: implications for male fertility. Mol Hum Reprod 20(11):1067–1076CrossRefGoogle Scholar
  45. Chen J, Cao L, Li Z, Li Y (2019) SIRT1 promotes GLUT1 expression and bladder cancer progression via regulation of glucose uptake. Hum Cell 32(2):193–201.  https://doi.org/10.1007/s13577-019-00237-5 CrossRefPubMedGoogle Scholar
  46. Richburg JH (2000) The relevance of spontaneous and chemically induced alterations in testicular germ cell apoptosis to toxicology. Toxicol Lett 112–113:79–86CrossRefGoogle Scholar
  47. Molpeceres V, Mauriz JL, Garcia-Mediavilla MV, Gonzalez P, Barrio JP, Gonzalez-Gallego J (2007) Melatonin is able to reduce the apoptotic liver changes induced by aging via inhibition of the intrinsic pathway of apoptosis. J Gerontol A Biol Sci Med Sci 62(7):687–695.  https://doi.org/10.1093/gerona/62.7.687 CrossRefPubMedGoogle Scholar