Abstract
Highlights
- Spatial learning and memory of offspring rats were impaired after exposure to fluorine combined with aluminium(FA).
- Hippocampal miR-132 and miR-204 were increased after FA exposure.
- Hippocampal BDNF-TrkB signaling pathway was down-regulated after FA exposure.
- There were antagonistic effects between F and Al, with Al reducing the toxicity of F.
Fluorine and aluminium are nervous system poisons, but it remains unclear whether combined fluorine and aluminium exposure damages spatial learning and memory and, if so, by what mechanism. This study showed that exposure to fluorine and aluminium, either alone or combined, during the embryonic stage and into adulthood caused spatial learning and memory impairment in offspring rats; its mechanism may be associated with increases in miR-132 and miR-204 expression and downregulation of the BDNF-TrkB pathway in the hippocampus. The effects of F were obvious, but the effects of Al were slight. There were antagonistic effects between F and Al, with Al reducing the toxicity of F.
-
-
Effects of chronic fluorosis on the brain.
Highlights Reviewing the mechanism of brain injury caused by chronic fluorosis is of great significance for protecting residents in fluorosis endemic areas. Abstract This article reviews the effects of chronic fluorosis on the brain and possible mechanisms. We used PubMed, Medline and Cochraine databases to collect data on fluorosis, brain injury,
-
Pathologic changes and effect on the learning and memory ability in rats exposed to fluoride and aluminum
Background: The aim of this study is to establish a single and combined intoxication model of fluoride and aluminum so as to observe the impact of these chemicals on the learning and memory ability and the pathologic changes in brain of rats. Methods: Forty male Wistar rats were randomly assigned
-
Proteomic analysis of hippocampus in offspring male mice exposed to fluoride and lead
Fluoride and lead are two common pollutants in the environment. Previous investigations have found that high fluoride exposure can increase the lead burden. In this experiment, in order to study on the molecular mechanisms of central neural system injury induced by the above two elements, differently expressed protein spots in
-
Chronic AIF3 Administration: II. Selected Historical Observations.
Male Long-Evans rats were divided into four groups based on the concentrations of the AlF3 in the drinking water: 0.5 ppm, 5.0 ppm, 50 ppm, or a control solution of double-distilled, de-ionized water. Water was available ad libitum for 45 weeks. Following the behavioral studies, histological, immunohistochemical, and overall brain
-
Fluoride enhances the effect of aluminium chloride on interconnections between aggregates of hippocampal neurons
The role of fluoride in aluminium neurotoxicity was studied using an in vitro system of cultured hippocampal neurons from foetal rats. Sodium fluoride (50 microM) and aluminium chloride (12.5 microM) were administered alone or in a specific combination (50 + 12.5 microM) in a 14-day culture in a chemically defined
Related Studies :
-
-
-
Fluoride: Developmental Neurotoxicity.
Developmental Neurotoxicity There has been a tremendous amount of research done on the association of exposure to fluoride with developmental neurotoxicity. There are over 60 studies reporting reduced IQ in children and several on the impaired learning/memory in animals. And there are studies which link fluoride to Attention Deficit Hyperactivity Disorder. Teaching
-
Fluoride's Effect on Fetal Brain
The human placenta does not prevent the passage of fluoride from a pregnant mother's bloodstream to the fetus. As a result, a fetus can be harmed by fluoride ingested pregnancy. Based on research from China, the fetal brain is one of the organs susceptible to fluoride poisoning. As highlighted by the excerpts
-
NRC (2006): Fluoride's Neurotoxicity and Neurobehavioral Effects
The NRC's analysis on fluoride and the brain.
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
-
Fluoride & IQ: 76 Studies
• As of July 18, 2022, a total of 85 human studies have investigated the relationship between fluoride and human intelligence. • Of these investigations, 76 studies have reported that elevated fluoride exposure is associated with reduced IQ in humans. • The studies which reported an association of reduced IQ with exposure
Related FAN Content :
-