Abstract
Summary: Oral administration of sodium fluoride (NaF, 6 and 12 mg/kg body weight/day) to Swiss male albino mice for 30 days caused significant, dose-dependent reduction in DNA, RNA, and protein contents in cerebral hemisphere, cerebellum, and medulla oblongata of the brain. After 30 days of NaF treatment, followed by withdrawal of treatment for 30 days, partial but significant amelioration occurred. Administration of 2% black tea extract alone for 30 days did not cause any significant effect. However, concurrent administrations of NaF and black tea extract for 30 days cause significant amelioration in all parameters studied.
-
-
Amelioration by black tea of sodium fluoride-induced changes in protein content of cerebral hemisphere, cerebellum and medulla oblongata in brain region of mice.
Oral administration of sodium fluoride (NaF, 6 and 12 mg/kg body weight/day) to Swiss strain male albino mice for 30 days caused significant dose-dependant reduction in the content of acidic, basic, neutral, and total protein in cerebral hemisphere, cerebellum and medulla oblongata region of brain. After 30 days of NaF
-
Mitigation of sodium fluoride induced toxicity in mice brain by black tea infusion.
SUMMARY: In an extension of previous work on fluoride (F) toxicity in a group of 80 Swiss albino mice, the mitigating effects of polyphenols in black tea on the F-induced increase in glycogen, cholesterol, and total lipids in the cerebral hemisphere (CH), cerebellum (CB), and medulla oblongata (MO) regions of
-
Black tea extract mitigation of NaF-induced lipid peroxidation in different regions of mice brains.
SUMMARY: As part of our investigation of fluoride toxicity effects in a group of 80 Swiss albino adult male mice, we examined the mitigating effects of black tea extract (BTE) on the F-induced enzymatic and non-enzymatic parameters of oxidative stress in the cerebral hemisphere (CH), cerebellum (CB), and medulla oblongata (MO) of the
-
Fluoride and aluminum in teas and tea-based beverages.
OBJECTIVE: To evaluate fluoride and aluminum concentration in herbal, black, ready-to-drink, and imported teas available in Brazil considering the risks fluoride and aluminum pose to oral and general health, respectively. METHODS: One-hundred and seventy-seven samples of herbal and black tea, 11 types of imported tea and 21 samples of ready-to-drink tea
-
Skeletal fluorosis mimicking seronegative spondyloarthropathy: a deceptive presentation
Skeletal fluorosis is rarely recognized early and is amajor cause of morbidity.We report on a 40-year-old man with skeletal fluorosis mimicking seronegative spondyloarthropathy.
Related Studies :
-
-
-
Fluoride content in tea and its relationship with tea quality.
J Agric Food Chem. 2004 Jul 14;52(14):4472-6. Fluoride content in tea and its relationship with tea quality. Lu Y, Guo WF, Yang XQ. Department of Tea Science, Zhejiang University, 268 Kaixuan Road, Hangzhou 310027, People's Republic of China. Abstract: The tea plant is known as a fluorine accumulator. Fluoride (F) content in fresh leaves collected
-
Tea Intake Is a Risk Factor for Skeletal Fluorosis
A number of recent studies have found that heavy tea drinkers can develop skeletal fluorosis - a bone disease caused by excessive intake of fluoride.
-
Estimated "Threshold" Doses for Skeletal Fluorosis
For over 40 years health authorities stated that in order to develop crippling skeletal fluorosis, one would need to ingest between 20 and 80 mg of fluoride per day for at least 10 or 20 years. This belief, however, which played an instrumental role in shaping current fluoride policies, is now acknowledged by the National Academy of Sciences (NAS) and other US health authorities to be incorrect.
-
Fluoride's Effect on Fetal Brain
The human placenta does not prevent the passage of fluoride from a pregnant mother's bloodstream to the fetus. As a result, a fetus can be harmed by fluoride ingested pregnancy. Based on research from China, the fetal brain is one of the organs susceptible to fluoride poisoning. As highlighted by the excerpts
-
Fluoride: Developmental Neurotoxicity.
Developmental Neurotoxicity There has been a tremendous amount of research done on the association of exposure to fluoride with developmental neurotoxicity. There are over 60 studies reporting reduced IQ in children and several on the impaired learning/memory in animals. And there are studies which link fluoride to Attention Deficit Hyperactivity Disorder. Teaching
Related FAN Content :
-