Abstract
The pilot study is conducted using 30 adult albino rats (200-250gm). They were divided into one control and one experimental group. Group 1 is Control (Ctrl), which received food and water ad-libitum, experimental group received, 20 ppm of sodium fluoride (NaF) for 7 weeks. The body weights and physical activity was significantly reduced in experimental group, whereas fluoride levels of hippocampus, was greatly increased. Light microscopy of the hippocampus, showed reduced neuronal density more pronounced in the CA3 region of hippocampus. Neuronal density was reduced to 84.2 cells/ cu mm in experimental group as compared to 132.2 cells/ cu mm in control.
-
-
Combined impact of exercise and temperature in learning and memory performance of fluoride toxicated rats.
In previous studies, we investigated a link between high fluoride exposure and functional IQ deficits in rats. This study is an extension conducted to explore the combined influence of physical exercise and temperature stress on the learning ability and memory in rats and to assess whether any positive modulation could
-
Effect of exercise on microglial activation and transcriptome of hippocampus in fluorosis mice.
Highlights Exercise alleviated fluoride-induced activation of microglia in hippocampus. Exercise altered the expressions of 670 genes in hippocampus of fluorosis mice. Neuroactive ligand-receptor interaction pathway involved in the regulation of exercise on neuro-fluorosis. Fluorosis is a widespread endemic disease. Reports have shown that high fluoride causes the dysfunction of central
-
Biochemical changes in brain and other tissues of young adult female mice from fluoride in their drinking water.
One-month old female Swiss albino mice were given 60 ppm and 120 ppm F– (from NaF) in their drinking water for 30 days to study effects of fluoride on neurotransmitter enzymes (AchE, BchE), anti-oxidant enzymes (SOD, CAT), and lipid peroxidation (MDA) in brain (hippocampus), liver, and gastrocnemius muscle. Activities of AchE and BchE showed a concentration-dependent decrease
-
Effects of chronic fluorosis on CAMKIIA, C-FOS, BAX, and BCL-2 channel signalling in the hippocampus of rats
In this study, the neurotoxicity of fluoride (F) in the hippocampus of rats exposed to 15, 30, and 60 mg NaF/L in their drinking water for nine months was investigated. Compared with the control (<0.5 mg F/L), significant increases in the expression of calcium/calmodulin-dependent kinase II alpha (CaMKII?) (F=5.228, p<0.05)
-
[Effects of fluoride on SNAP-25 gene expression in rat hippocampus].
After the establishment of fluorosis animal model, the gene expression of SNAP-25 was detected in order to provide experimental data for nervous system injury induced by fluoride. The results showed that, compared with the de-ionized water group, SNAP-25 mRNA expression was significantly reduced by fluoride.
Related Studies :
-
-
-
Fluoride & IQ: 76 Studies
• As of July 18, 2022, a total of 85 human studies have investigated the relationship between fluoride and human intelligence. • Of these investigations, 76 studies have reported that elevated fluoride exposure is associated with reduced IQ in humans. • The studies which reported an association of reduced IQ with exposure
-
Fluoride's Effect on Fetal Brain
The human placenta does not prevent the passage of fluoride from a pregnant mother's bloodstream to the fetus. As a result, a fetus can be harmed by fluoride ingested pregnancy. Based on research from China, the fetal brain is one of the organs susceptible to fluoride poisoning. As highlighted by the excerpts
-
NRC (2006): Fluoride's Neurotoxicity and Neurobehavioral Effects
The NRC's analysis on fluoride and the brain.
-
Fluoride: Developmental Neurotoxicity.
Developmental Neurotoxicity There has been a tremendous amount of research done on the association of exposure to fluoride with developmental neurotoxicity. There are over 60 studies reporting reduced IQ in children and several on the impaired learning/memory in animals. And there are studies which link fluoride to Attention Deficit Hyperactivity Disorder. Teaching
-
Fluoride Affects Learning & Memory in Animals
An association between elevated fluoride exposure and reduced intelligence has now been observed in 65 IQ studies. Although a link between fluoride and intelligence might initially seem surprising or random, it is actually consistent with a large body of animal research. This animal research includes the following 45 studies (out
Related FAN Content :
-