Fluoride Action Network


Fluoride can alter the formation of mineralized tissues, including enamel, dentin, and bone. Dentin fluorosis occurs in tandem with enamel fluorosis. However, the pathogenesis of dentin fluorosis and its mechanisms are poorly understood. In this study, we report the effects of fluoride on the initiation of dentin matrix formation and odontoblast function. Mice from two enamel fluorosis susceptible strains (A/J and C57BL/6J) were given either 0 or 50 ppm fluoride in drinking water for 4 weeks. In both mouse strains, there was no overall change in dentin thickness, but fluoride treatment resulted in a significant increase in the thickness of the predentin layer. The lightly mineralized layer (LL), which lies at the border between predentin and fully mineralized dentin and is associated with dentin phosphoprotein (DPP), was absent in fluoride exposed mice. Consistent with a possible reduction of DPP, fluoride-treated mice showed reduced immunostaining for dentin sialoprotein (DSP). Fluoride reduced RUNX2, the transcription regulator of dentin sialophosphoprotein (DSPP), that is cleaved to form both DPP and DSP. In fluoride-treated mouse odontoblasts, the effect of fluoride was further seen in the upstream of RUNX2 as the reduced nuclear translocation of B-catenin and phosphorylated p65/NFkB. In vitro, MD10-F2 pre-odontoblast cells showed inhibition of the Dspp mRNA level in the presence of 10 uM fluoride, and qPCR analysis showed a significantly downregulated level of mRNAs for RUNX2, B-catenin, and Wnt10b. These findings indicate that in mice, systemic exposure to excess fluoride resulted in reduced Wnt/B-catenin signaling in differentiating odontoblasts to downregulate DSPP production via RUNX2.

*Original abstract online at https://link.springer.com/article/10.1007%2Fs12011-020-02434-y



  1. 1.

    Fejerskov O, Larsen MJ, Josephsen K, Thylstrup A (1979) Effect of long-term administration of fluoride on plasma fluoride and calcium in relation to forming enamel and dentin in rats. Scand J Dent Res 87(2):98–104

    CAS  PubMed  Google Scholar

  2. 2.

    Vieira A, Hancock R, Dumitriu M, Schwartz M, Limeback H, Grynpas M (2005) How does fluoride affect dentin microhardness and mineralization? J Dent Res 84(10):951–957

    CAS  Article  Google Scholar

  3. 3.

    Kierdorf U, Kierdorf H, Fejerskov O (1993) Fluoride-induced developmental changes in enamel and dentine of European roe deer (Capreolus capreolus L.) as a result of environmental pollution. Arch Oral Biol 38(12):1071–1081

    CAS  Article  Google Scholar

  4. 4.

    Yaeger JA (1966) The effects of high fluoride diets on developing enamel and dentin in the incisors of rats. Am J Anat 118(2):665–683. https://doi.org/10.1002/aja.1001180219

    CAS  Article  PubMed  Google Scholar

  5. 5.

    Fejerskov O, Thylstrup A, Larsen MJ (1977) Clinical and structural features and possible pathogenic mechanisms of dental fluorosis. Scand J Dent Res 85(7):510–534

    CAS  PubMed  Google Scholar

  6. 6.

    Fejerskov O, Yaeger JA, Thylstrup A (1979) Microradiography of the effect of acute and chronic administration of fluoride on human and rat dentine and enamel. Arch Oral Biol 24(2):123–130

    CAS  Article  Google Scholar

  7. 7.

    Rojas-Sanchez F, Alaminos M, Campos A, Rivera H, Sanchez-Quevedo MC (2007) Dentin in severe fluorosis: a quantitative histochemical study. J Dent Res 86(9):857–861

    CAS  Article  Google Scholar

  8. 8.

    Nelson DG, Coote GE, Vickridge IC, Suckling G (1989) Proton microprobe determination of fluorine profiles in the enamel and dentine of erupting incisors from sheep given low and high daily doses of fluoride. Arch Oral Biol 34(6):419–429

    CAS  Article  Google Scholar

  9. 9.

    Waidyasekera K, Nikaido T, Weerasinghe D, Watanabe A, Ichinose S, Tay F, Tagami J (2010) Why does fluorosed dentine show a higher susceptibility for caries: an ultra-morphological explanation. J Med Dent Sci 57(1):17–23

    PubMed  Google Scholar

  10. 10.

    Waidyasekera PG, Nikaido T, Weerasinghe DD, Wettasinghe KA, Tagami J (2007) Caries susceptibility of human fluorosed enamel and dentine. J Dent 35(4):343–349. https://doi.org/10.1016/j.jdent.2006.10.008

    CAS  Article  PubMed  Google Scholar

  11. 11.

    Milan AM, Waddington RJ, Embery G (1999) Altered phosphorylation of rat dentine phosphoproteins by fluoride in vivo. Calcif Tissue Int 64(3):234–238

    CAS  Article  Google Scholar

  12. 12.

    Li P, Xue Y, Zhang W, Teng F, Sun Y, Qu T, Chen X, Cheng X, Song B, Luo W, Yu Q (2013) Sodium fluoride induces apoptosis in odontoblasts via a JNK-dependent mechanism. Toxicology 308:138–145. https://doi.org/10.1016/j.tox.2013.03.016

    CAS  Article  PubMed  Google Scholar

  13. 13.

    Cvikl B, Lussi A, Carvalho TS, Moritz A, Gruber R (2018) Stannous chloride and stannous fluoride are inhibitors of matrix metalloproteinases. J Dent 78:51–58. https://doi.org/10.1016/j.jdent.2018.08.002

    CAS  Article  PubMed  Google Scholar

  14. 14.

    Wurtz T, Houari S, Mauro N, MacDougall M, Peters H, Berdal A (2008) Fluoride at non-toxic dose affects odontoblast gene expression in vitro. Toxicology 249(1):26–34. https://doi.org/10.1016/j.tox.2008.04.013

    CAS  Article  PubMed  Google Scholar

  15. 15.

    Houari S, Wurtz T, Ferbus D, Chateau D, Dessombz A, Berdal A, Babajko S (2014) Asporin and the mineralization process in fluoride-treated rats. J Bone Miner Res 29(6):1446–1455. https://doi.org/10.1002/jbmr.2153

    CAS  Article  PubMed  Google Scholar

  16. 16.

    Ruch JV, Lesot H, Begue-Kirn C (1995) Odontoblast differentiation. Int J Dev Biol 39(1):51–68

    CAS  PubMed  Google Scholar

  17. 17.

    Miyazaki T, Kanatani N, Rokutanda S, Yoshida C, Toyosawa S, Nakamura R, Takada S, Komori T (2008) Inhibition of the terminal differentiation of odontoblasts and their transdifferentiation into osteoblasts in Runx2 transgenic mice. Arch Histol Cytol 71(2):131–146

    CAS  Article  Google Scholar

  18. 18.

    Yun C-Y, Choi H, You Y-J, Yang J-Y, Baek J-A, Cho E-S (2016) Requirement of Smad4-mediated signaling in odontoblast differentiation and dentin matrix formation. Anat Cell Biol 49(3):199–205

    Article  Google Scholar

  19. 19.

    Yan D, Willett TL, Gu XM, Martinez-Mier EA, Sardone L, McShane L, Grynpas M, Everett ET (2011) Phenotypic variation of fluoride responses between inbred strains of mice. Cells Tissues Organs 194(2–4):261–267. https://doi.org/10.1159/000324224

    CAS  Article  PubMed  PubMed Central  Google Scholar

  20. 20.

    Everett ET (2011) Fluoride’s effects on the formation of teeth and bones, and the influence of genetics. J Dent Res 90(5):552–560. https://doi.org/10.1177/0022034510384626

    CAS  Article  PubMed  PubMed Central  Google Scholar

  21. 21.

    Kawamoto T (2003) Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Arch Histol Cytol 66(2):123–143

    Article  Google Scholar

  22. 22.

    Taves DR (1968) Separation of fluoride by rapid diffusion using hexamethyldisiloxane. Talanta 15:969–974

    CAS  Article  Google Scholar

  23. 23.

    Bawden JW, Deaton TG, Koch GG, Crawford BP (1989) Effect of an acute maternal fluoride dose on fetal plasma fluoride levels and enamel fluoride uptake in guinea pigs. J Dent Res 68(7):1169–1172

    CAS  Article  Google Scholar

  24. 24.

    Gomez S, Boyde A (1994) Correlated alkaline phosphatase histochemistry and quantitative backscattered electron imaging in the study of rat incisor ameloblasts and enamel mineralization. Microsc Res Tech 29(1):29–36. https://doi.org/10.1002/jemt.1070290105

    CAS  Article  PubMed  Google Scholar

  25. 25.

    Symons NB (1955) Alkaline phosphatase activity in the developing teeth of the rat. J Anat 89(2):238–245

    CAS  PubMed  PubMed Central  Google Scholar

  26. 26.

    Burstone S (1962) Enzyme histochemistry, and its application in the study of neoplasms. Academic Press

  27. 27.

    Chen S, Rani S, Wu Y, Unterbrink A, Gu TT, Gluhak-Heinrich J, Chuang H-H, MacDougall M (2005) Differential regulation of dentin sialophosphoprotein expression by Runx2 during odontoblast cytodifferentiation. J Biol Chem 280(33):29717–29727. https://doi.org/10.1074/jbc.M502929200

    CAS  Article  PubMed  Google Scholar

  28. 28.

    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2???CT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    CAS  Article  PubMed  PubMed Central  Google Scholar

  29. 29.

    Zhang Y, Kim JY, Horst O, Nakano Y, Zhu L, Radlanski RJ, Ho S, Den Besten PK (2014) Fluorosed mouse ameloblasts have increased SATB1 retention and Galphaq activity. PLoS One 9(8):e103994. https://doi.org/10.1371/journal.pone.0103994

    CAS  Article  PubMed  PubMed Central  Google Scholar

  30. 30.

    Guy WS, Taves DR, Brey WS (1976) Organic Fluorocompounds in human plasma: prevalence and characterization. In: Biochemistry involving carbon-fluorine bonds, vol 28. ACS Symposium Series, vol 28. AMERICAN CHEMICAL SOCIETY, pp 117-134. https://doi.org/10.1021/bk-1976-0028.ch007

  31. 31.

    Ahmad M, Iseki H, Abduweli D, Baba O, Tabata MJ, Takano Y (2011) Ultrastructural and histochemical evaluation of appositional mineralization of circumpulpal dentin at the crown- and root-analog portions of rat incisors. J Electron Microsc 60(1):79–87. https://doi.org/10.1093/jmicro/dfq075

    CAS  Article  Google Scholar

  32. 32.

    Goldberg M, Septier D (1996) A comparative study of the transition between predentin and dentin, using various preparative procedures in the rat. Eur J Oral Sci 104(3):269–277

    CAS  Article  Google Scholar

  33. 33.

    Suzuki M, Shin M, Simmer JP, Bartlett JD (2014) Fluoride affects enamel protein content via TGF-beta1-mediated KLK4 inhibition. J Dent Res 93(10):1022–1027. https://doi.org/10.1177/0022034514545629

    CAS  Article  PubMed  PubMed Central  Google Scholar

  34. 34.

    Braut A, Kollar EJ, Mina M (2003) Analysis of the odontogenic and osteogenic potentials of dental pulp in vivo using a Col1a1-2.3-GFP transgene. Int J Dev Biol 47(4):281–292

    CAS  PubMed  Google Scholar

  35. 35.

    Yamakoshi Y, Hu JC-C, Fukae M, Zhang H, Simmer JP (2005) Dentin glycoprotein: the protein in the middle of the dentin sialophosphoprotein chimera. J Biol Chem 280(17):17472–17479. https://doi.org/10.1074/jbc.M413220200

    CAS  Article  PubMed  Google Scholar

  36. 36.

    Sreenath T, Thyagarajan T, Hall B, Longenecker G, D’Souza R, Hong S, Wright JT, MacDougall M, Sauk J, Kulkarni AB (2003) Dentin sialophosphoprotein knockout mouse teeth display widened predentin zone and develop defective dentin mineralization similar to human dentinogenesis imperfecta type III. J Biol Chem 278(27):24874–24880. https://doi.org/10.1074/jbc.M303908200

    CAS  Article  PubMed  Google Scholar

  37. 37.

    Suzuki S, Sreenath T, Haruyama N, Honeycutt C, Terse A, Cho A, Kohler T, Muller R, Goldberg M, Kulkarni AB (2009) Dentin sialoprotein and dentin phosphoprotein have distinct roles in dentin mineralization. Matrix Biol 28(4):221–229. https://doi.org/10.1016/j.matbio.2009.03.006

    CAS  Article  PubMed  PubMed Central  Google Scholar

  38. 38.

    Oh H-J, Lee H-K, Park S-J, Cho Y-S, Bae H-S, Cho M-I, Park J-C (2012) Zinc balance is critical for NFI-C mediated regulation of odontoblast differentiation. J Cell Biochem 113(3):877–887. https://doi.org/10.1002/jcb.23421

    CAS  Article  PubMed  Google Scholar

  39. 39.

    Narayanan K, Gajjeraman S, Ramachandran A, Hao J, George A (2006) Dentin matrix protein 1 regulates dentin sialophosphoprotein gene transcription during early odontoblast differentiation. J Biol Chem 281(28):19064–19071. https://doi.org/10.1074/jbc.M600714200

    CAS  Article  PubMed  Google Scholar

  40. 40.

    Yang G, Yuan G, MacDougall M, Zhi C, Chen S (2017) BMP-2 induced Dspp transcription is mediated by Dlx3/Osx signaling pathway in odontoblasts. Sci Rep 7(1):10775. https://doi.org/10.1038/s41598-017-10908-8

    CAS  Article  PubMed  PubMed Central  Google Scholar

  41. 41.

    Chen S, Gluhak-Heinrich J, Wang YH, Wu YM, Chuang HH, Chen L, Yuan GH, Dong J, Gay I, MacDougall M (2009) Runx2, Osx, and Dspp in tooth development. J Dent Res 88(10):904–909. https://doi.org/10.1177/0022034509342873

    CAS  Article  PubMed  PubMed Central  Google Scholar

  42. 42.

    Lee D-S, Choung H-W, Kim H-J, Gronostajski RM, Yang Y-I, Ryoo H-M, Lee ZH, Kim H-H, Cho E-S, Park J-C (2014) NFI-C regulates osteoblast differentiation via control of osterix expression. Stem Cells 32(9):2467–2479. https://doi.org/10.1002/stem.1733

    CAS  Article  PubMed  Google Scholar

  43. 43.

    Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PVN, Komm BS, Javed A, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2005) Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem 280(39):33132–33140. https://doi.org/10.1074/jbc.M500608200

    CAS  Article  PubMed  Google Scholar

  44. 44.

    Yamashiro T, Zheng L, Shitaku Y, Saito M, Tsubakimoto T, Takada K, Takano-Yamamoto T, Thesleff I (2007) Wnt10a regulates dentin sialophosphoprotein mRNA expression and possibly links odontoblast differentiation and tooth morphogenesis. Differentiation 75(5):452–462. https://doi.org/10.1111/j.1432-0436.2006.00150.x

    CAS  Article  PubMed  Google Scholar

  45. 45.

    Sagomonyants K, Mina M (2014) Biphasic effects of FGF2 on odontoblast differentiation involve changes in the BMP and Wnt signaling pathways. Connect Tissue Res 55(sup1):53–56. https://doi.org/10.3109/03008207.2014.923867

    CAS  Article  PubMed  PubMed Central  Google Scholar

  46. 46.

    Cawthorn WP, Bree AJ, Yao Y, Du B, Hemati N, Martinez-Santibanez G, MacDougald OA (2012) Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a beta-catenin-dependent mechanism. Bone 50(2):477–489. https://doi.org/10.1016/j.bone.2011.08.010

    CAS  Article  PubMed  Google Scholar

  47. 47.

    Qurrat Ul A, Seemab U, Nawaz S, Rashid S (2011) Integrative analyses of conserved WNT clusters and their co-operative behaviour in human breast cancer. Bioinformation 7(7):339–346

    Article  Google Scholar

  48. 48.

    Katoh M, Katoh M (2007) AP1- and NF-kappaB-binding sites conserved among mammalian WNT10B orthologs elucidate the TNFalpha-WNT10B signaling loop implicated in carcinogenesis and adipogenesis. Int J Mol Med 19(4):699–703

    CAS  PubMed  Google Scholar

  49. 49.

    Li J, Peet GW, Balzarano D, Li X, Massa P, Barton RW, Marcu KB (2001) Novel NEMO/IkappaB kinase and NF-kappa B target genes at the pre-B to immature B cell transition. J Biol Chem 276(21):18579–18590. https://doi.org/10.1074/jbc.M100846200

    CAS  Article  PubMed  Google Scholar

  50. 50.

    Everett ET, McHenry MA, Reynolds N, Eggertsson H, Sullivan J, Kantmann C, Martinez-Mier EA, Warrick JM, Stookey GK (2002) Dental fluorosis: variability among different inbred mouse strains. J Dent Res 81(11):794–798

    CAS  Article  Google Scholar

  51. 51.

    Yan D, Gurumurthy A, Wright M, Pfeiler TW, Loboa EG, Everett ET (2007) Genetic background influences fluoride’s effects on osteoclastogenesis. Bone 41(6):1036–1044. https://doi.org/10.1016/j.bone.2007.07.018

    CAS  Article  PubMed  PubMed Central  Google Scholar

  52. 52.

    Mousny M, Banse X, Wise L, Everett ET, Hancock R, Vieth R, Devogelaer JP, Grynpas MD (2006) The genetic influence on bone susceptibility to fluoride. Bone 39(6):1283–1289. https://doi.org/10.1016/j.bone.2006.06.006

    CAS  Article  PubMed  Google Scholar

  53. 53.

    Beertsen W, Niehof A (1986) Root-analogue versus crown-analogue dentin: a radioautographic and ultrastructural investigation of the mouse incisor. Anat Rec 215(2):106–118. https://doi.org/10.1002/ar.1092150204

    CAS  Article  PubMed  Google Scholar

  54. 54.

    Boskey AL, Maresca M, Doty S, Sabsay B, Veis A (1990) Concentration-dependent effects of dentin phosphophoryn in the regulation of in vitro hydroxyapatite formation and growth. Bone Miner 11(1):55–65. https://doi.org/10.1016/0169-6009(90)90015-8

    CAS  Article  PubMed  Google Scholar

  55. 55.

    Milan AM, Waddington RJ, Embery G (2001) Fluoride alters casein kinase II and alkaline phosphatase activity in vitro with potential implications for dentine mineralization. Arch Oral Biol 46(4):343–351

    CAS  Article  Google Scholar

  56. 56.

    Dimuzio MT, Veis A (1978) Phosphophoryns-major noncollagenous proteins of rat incisor dentin. Calcif Tissue Res 25(2):169–178

    CAS  Article  Google Scholar

  57. 57.

    Butler WT (1985) The chemistry and biology of mineralized tissues: proceedings of the Second International Conference on the Chemistry and Biology of Mineralized Tissues, held in Gulf Shores, Alabama, September 9-14, 1984. vol 436 p. s.n.], [S.l

  58. 58.

    Yamakoshi Y, Hu JC, Fukae M, Iwata T, Kim JW, Zhang H, Simmer JP (2005) Porcine dentin sialoprotein is a proteoglycan with glycosaminoglycan chains containing chondroitin 6-sulfate. J Biol Chem 280(2):1552–1560. https://doi.org/10.1074/jbc.M409606200

    CAS  Article  PubMed  Google Scholar

  59. 59.

    MacDougall M, Simmons D, Luan X, Nydegger J, Feng J, Gu TT (1997) Dentin Phosphoprotein and dentin sialoprotein are cleavage products expressed from a single transcript coded by a gene on human chromosome 4: dentin phosphoprotein dna sequence determination. J Biol Chem 272(2):835–842. https://doi.org/10.1074/jbc.272.2.835

    CAS  Article  PubMed  Google Scholar

  60. 60.

    Sun Y, Lu Y, Chen S, Prasad M, Wang X, Zhu Q, Zhang J, Ball H, Feng J, Butler WT, Qin C (2010) Key proteolytic cleavage site and full-length form of DSPP. J Dent Res 89(5):498–503. https://doi.org/10.1177/0022034510363109

    CAS  Article  PubMed  PubMed Central  Google Scholar

  61. 61.

    Tsuchiya S, Simmer JP, Hu JCC, Richardson AS, Yamakoshi F, Yamakoshi Y (2011) Astacin proteases cleave dentin sialophosphoprotein (Dspp) to generate dentin phosphoprotein (Dpp). J Bone Miner Res 26(1):220–228. https://doi.org/10.1002/jbmr.202

    CAS  Article  PubMed  Google Scholar

  62. 62.

    Zhang Y, Song Y, Ravindran S, Gao Q, Huang CC, Ramachandran A, Kulkarni A, George A (2014) DSPP contains an IRES element responsible for the translation of dentin phosphophoryn. J Dent Res 93(2):155–161. https://doi.org/10.1177/0022034513516631

    CAS  Article  PubMed  PubMed Central  Google Scholar

  63. 63.

    Lim WH, Liu B, Cheng D, Hunter DJ, Zhong Z, Ramos DM, Williams BO, Sharpe PT, Bardet C, Mah SJ, Helms JA (2014) Wnt signaling regulates pulp volume and dentin thickness. J Bone Miner Res 29(4):892–901. https://doi.org/10.1002/jbmr.2088

    CAS  Article  PubMed  Google Scholar

  64. 64.

    Chen LF, Williams SA, Mu Y, Nakano H, Duerr JM, Buckbinder L, Greene WC (2005) NF-kappaB RelA phosphorylation regulates RelA acetylation. Mol Cell Biol 25(18):7966–7975. https://doi.org/10.1128/MCB.25.18.7966-7975.2005

    CAS  Article  PubMed  PubMed Central  Google Scholar

  65. 65.

    Arab-Nozari M, Mohammadi E, Shokrzadeh M, Ahangar N, Amiri FT, Shaki F (2020) Co-exposure to non-toxic levels of cadmium and fluoride induces hepatotoxicity in rats via triggering mitochondrial oxidative damage, apoptosis, and NF-kB pathways. Environ Sci Pollut Res Int 27(19):24048–24058. https://doi.org/10.1007/s11356-020-08791-4

    CAS  Article  PubMed  Google Scholar

  66. 66.

    Refsnes M, Skuland T, Lag M, Schwarze PE, Ovrevik J (2014) Differential NF-kappaB and MAPK activation underlies fluoride- and TPA-mediated CXCL8 (IL-8) induction in lung epithelial cells. J Inflamm Res 7:169–185. https://doi.org/10.2147/JIR.S69646

    Article  PubMed  PubMed Central  Google Scholar

  67. 67.

    Baskiewicz-Masiuk M, Rybicka M, Gutowska I, Bober J, Grymula K, Dziedziejko V (2004) Sodium fluoride enhancement of monocyte differentiation via nuclear factor Kappa B mechanism. In

  68. 68.

    Zhang M, Wang A, Xia T, He P (2008) Effects of fluoride on DNA damage, S-phase cell-cycle arrest and the expression of NF-kappaB in primary cultured rat hippocampal neurons. Toxicol Lett 179(1):1–5. https://doi.org/10.1016/j.toxlet.2008.03.002

    CAS  Article  PubMed  Google Scholar

  69. 69.

    Rani CSS, MacDougall M (2000) Dental cells express factors that regulate bone resorption. Mol Cell Biol Res Commun 3(3):145–152. https://doi.org/10.1006/mcbr.2000.0205

    CAS  Article  PubMed  Google Scholar

  70. 70.

    Kobayashi CAN, Leite AL, Peres-Buzalaf C, Carvalho JG, Whitford GM, Everett ET, Siqueira WL, Buzalaf MAR (2014) Bone response to fluoride exposure is influenced by genetics. PLoS One 9(12):e114343. https://doi.org/10.1371/journal.pone.0114343

    CAS  Article  PubMed  PubMed Central  Google Scholar

  71. 71.

    Cheng PT, Bader SM, Grynpas MD (1995) Biphasic sodium fluoride effects on bone and bone mineral: a review. Cells Mater 5(3):271–282

    CAS  Google Scholar

  72. 72.

    Smalley JW, Embery G (1980) The influence of fluoride administration on the structure of proteoglycans in the developing rat incisor. Biochem J 190(2):263–272. https://doi.org/10.1042/bj1900263

    CAS  Article  PubMed  PubMed Central  Google Scholar

  73. 73.

    Waddington RJ, Embery G, Hall RC (1993) The influence of fluoride on proteoglycan structure using a rat odontoblast in vitro system. Calcif Tissue Int 52(5):392–398. https://doi.org/10.1007/BF00310205

    CAS  Article  PubMed  Google Scholar

  74. 74.

    Waddington RJ, Moseley R, Smith AJ, Sloan AJ, Embery G (2004) Fluoride-induced changes to proteoglycan structure synthesised within the dentine–pulp complex in vitro. Biochim Biophys Acta (BBA) – Mol Basis Dis 1689(2):142–151. https://doi.org/10.1016/j.bbadis.2004.03.003

    CAS  Article  Google Scholar

  75. 75.

    Susheela AK, Sharma K (1988) Fluoride-induced changes in the tooth glycosaminoglycans: an in vivo study in the rabbit. Arch Toxicol 62(4):328–330. https://doi.org/10.1007/BF00332496

    CAS  Article  PubMed  Google Scholar

  76. 76.

    Hall RC, Embery G, Waddington RJ (1996) Modification of the proteoglycans of rat incisor dentin-predentin during in vivo fluorosis. Eur J Oral Sci 104(3):285–291. https://doi.org/10.1111/j.1600-0722.1996.tb00079.x

    CAS  Article  PubMed  Google Scholar

  77. 77.

    Goldberg M, Takagi M (1993) Dentine proteoglycans: composition, ultrastructure and functions. Histochem J 25(11):781–806. https://doi.org/10.1007/BF02388111

    CAS  Article  PubMed  Google Scholar

  78. 78.

    Embery G, Hall R, Waddington R, Septier D, Goldberg M (2001) Proteoglycans in dentinogenesis. Crit Rev Oral Biol Med 12(4):331–349. https://doi.org/10.1177/10454411010120040401

    CAS  Article  PubMed  Google Scholar

  79. 79.

    de Mattos Pimenta Vidal C, Leme-Kraus AA, Rahman M, Farina AP, Bedran-Russo AK (2017) Role of proteoglycans on the biochemical and biomechanical properties of dentin organic matrix. Arch Oral Biol 82:203–208. https://doi.org/10.1016/j.archoralbio.2017.06.020

    CAS  Article  PubMed  PubMed Central  Google Scholar

Download references


This study was supported by funding from the Division of Pediatric Dentistry, Department of Orofacial Sciences, and the UCSF Center for Children’s Oral Health Research.