Fluoride Action Network

Abstract

18F-Sodium fluoride (18F-NaF) is a PET tracer that is mostly used in the evaluation of bone metastasis in oncology cases. Recently, 18F-NaF PET/CT is gaining wide popularity owing to its higher sensitivity over the other conventional bone tracer with higher and rapid single-pass extraction, negligible plasma protein binding, rapid blood, and renal clearance. In the era of constant evolution of cancer therapy regimens, considerable bone health impact is seen in the form of avascular necrosis, insufficiency fractures, among others. A significant number of these therapy-induced changes show high bone turnover and thereby 18F-NaF accumulation, mimicking metastatic lesions. This article summarizes and illustrates the pattern and morphological features of 18F-NaF PET/CT findings in these changes in the context of clinical and therapeutic history.

Keywords: 18F-NaF PET–CT; Bone metastases; Cancer; Therapy-induced changes.


*Original abstract online at https://link.springer.com/article/10.1007/s12149-022-01730-y


References

  1. Czernin J, Satyamurthy N, Schiepers C. Molecular mechanisms of bone 18F-NaF deposition. J Nucl Med. 2010;51:1826–9.

    CAS  PubMed  Google Scholar

  2. Laverick S, Bounds G, Wong WL. [18F]-Fluoride positron emission tomography for imaging condylar hyperplasia. Br J Oral Maxillofac Surg. 2009;47:196–9.

    CAS  PubMed  Google Scholar

  3. Sachpekidis C, Hillengass J, Goldschmidt H, et al. Quantitative analysis of 18F-NaF dynamic PET/CT cannot differentiate malignant from benign lesions in multiple myeloma. Am J Nucl Med Mol Imaging. 2017;7:148–56.

    CAS  PubMed  PubMed Central  Google Scholar

  4. Frost ML, Blake GM, Cook GJ, et al. Differences in regional bone perfusion and turnover between lumbar spine and distal humerus: 18F-fluoride PET study of treatment-naive and treated postmenopausal women. Bone. 2009;45:942–8.

    PubMed  Google Scholar

  5. Blake GM, Park-Holohan SJ, Cook GJ, et al. Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med. 2001;31:28–49.

    CAS  PubMed  Google Scholar

  6. Beheshti M, Mottaghy FM, Payche F, et al. 18 F-NaF PET/CT: EANM procedure guidelines for bone imaging. Eur J Nucl Med Mol Imaging. 2015;42:1767–77.

    CAS  PubMed  Google Scholar

  7. Segall G, Delbeke D, Stabin MG, et al. SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med. 2010;51:1813–20.

    PubMed  Google Scholar

  8. Usmani S, Ahmed N, Gnanasegaran G, Musbah A, Al Kandari F, Van den Wyngaert T. 18F-Sodium Fluoride (NaF) PET/CT in obese patients on LYSO PET/CT system: patient dosimetry, optimization of injected activity and acquisition time. J Nucl Med Technol. 2020. https://doi.org/10.2967/jnmt.120.258137.

    Article  PubMed  Google Scholar

  9. D’Oronzo S, Stucci S, Tucci M, Silvestris F. Cancer treatment-induced bone loss (CTIBL): pathogenesis and clinical implications. Cancer Treat Rev. 2015;41(9):798–808.

    CAS  PubMed  Google Scholar

  10. Kwak JJ, Tirumani SH, Van den Abbeele AD, et al. Cancer immunotherapy: imaging assessment of novel treatment response patterns and immune-related adverse events. Radiographics. 2015;35:424–37.

    PubMed  Google Scholar

  11. Bronstein Y, Ng CS, Hwu P, et al. Radiologic manifestations of immune-related adverse events in patients with metastatic melanoma undergoing anti-CTLA-4 antibody therapy. AJR Am J Roentgenol. 2011;197:W992–1000.

    PubMed  Google Scholar

  12. Wissing MD. Chemotherapy- and irradiation-induced bone loss in adults with solid tumors. Curr Osteoporos Rep. 2015;13:140–5.

    PubMed  PubMed Central  Google Scholar

  13. Haworth AE, Webb J. Skeletal complications of bisphosphonate use: what the radiologist should know. Br J Radiol. 2012;85:1333–42.

    CAS  PubMed  PubMed Central  Google Scholar

  14. Nicolatou-Galitis O, Schiødt M, Mendes RA, et al. Medication-related osteonecrosis of the jaw: definition and best practice for prevention, diagnosis, and treatment. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019;127:117–35.

    PubMed  Google Scholar

  15. Kim Y, Lee HY, Yoon HJ, et al. Utility of 18F-fluorodeoxy glucose and 18F-sodium fluoride positron emission tomography/computed tomography in the diagnosis of medication-related osteonecrosis of the jaw: a preclinical study in a rat model. J Craniomaxillofac Surg. 2016;44:357–63.

    PubMed  Google Scholar

  16. Wilde F, Steinhoff K, Frerich B, et al. Positron-emission tomography imaging in the diagnosis of bisphosphonate-related osteonecrosis of the jaw. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107:412–9.

    PubMed  Google Scholar

  17. Raje N, Woo SB, Hande K, et al. Clinical, radiographic, and biochemical characterization of multiple myeloma patients with osteonecrosis of the jaw. Clin Cancer Res. 2008;14:2387–95.

    CAS  PubMed  Google Scholar

  18. Tile L, Cheung AM. Atypical femur fractures: current understanding and approach to management. Ther Adv Musculoskelet Dis. 2020. https://doi.org/10.1177/1759720X20916983.

    Article  PubMed  PubMed Central  Google Scholar

  19. Laarschot DM, Somford MP, Jager A, et al. “Atypical” atypical femur fractures and use of bisphosphonates. Clin Cases Miner Bone Metab. 2016;13:204–8.

    PubMed  Google Scholar

  20. Roca-Ayats N, Balcells S, Garcia-Giralt N, et al. GGPS1 mutation and atypical femoral fractures with bisphosphonates. N Engl J Med. 2017;376:1794–5.

    PubMed  Google Scholar

  21. Spyridonidis TJ, Mousafiris KV, Rapti EK, et al. Bone scintigraphy depicts bilateral atypical femoral stress fractures with metachronous presentation, long before a complete fracture occurs. Hell J Nucl Med. 2014;17:54–7.

    PubMed  Google Scholar

  22. D’Oronzo S, Stucci S, Tucci M, Silvestris F. Cancer treatment-induced bone loss (CTIBL): pathogenesis and clinical implications. Cancer Treat Rev. 2015;41:798–808.

    CAS  PubMed  Google Scholar

  23. Brufsky AM. Cancer treatment-induced bone loss: pathophysiology and clinical perspectives. Oncologist. 2008;13:187–95.

    CAS  PubMed  Google Scholar

  24. Bjarnason NH, Hitz M, Jorgensen NR, et al. Adverse bone effects during pharmacological breast cancer therapy. Acta Oncol. 2008;47:747–54.

    CAS  PubMed  Google Scholar

  25. Agrawal K, Tripathy SK, Sen RK, et al. Nuclear medicine imaging in osteonecrosis of hip: old and current concepts. World J Orthop. 2017;8:747–53.

    PubMed  PubMed Central  Google Scholar

  26. Dasa V, Adbel-Nabi H, Anders MJ, Mihalko WM. F-18 fluoride positron emission tomography of the hip for osteonecrosis. Clin Orthop Relat Res. 2008;466(5):1081–6.

    PubMed  PubMed Central  Google Scholar

  27. Gayana S, Bhattacharya A, Sen RK, Singh P, Prakash M, Mittal BR. F-18 fluoride positron emission tomography/computed tomography in the diagnosis of avascular necrosis of the femoral head: comparison with magnetic resonance imaging. Indian J Nucl Med. 2016;31:3–8.

    PubMed  PubMed Central  Google Scholar

  28. Huh SJ, Kim B, Kang MK, et al. Pelvic insufficiency fracture after pelvic irradiation in uterine cervix cancer. Gynecol Oncol. 2002;86:264–8.

    PubMed  Google Scholar

  29. Chung YK, Lee YK, Yoon BH, Suh DH, Koo KH. Pelvic insufficiency fractures in cervical cancer after radiation therapy: a meta-analysis and review. In Vivo. 2021;35:1109–15.

    PubMed  PubMed Central  Google Scholar

  30. Peh WC, Khong PL, Yin Y, et al. Imaging of pelvic insufficiency fractures. Radiographics. 1996;16:335–48.

    CAS  PubMed  Google Scholar

  31. Lapina O, Tiškevi?ius S. Sacral insufficiency fracture after pelvic radiotherapy: a diagnostic challenge for a radiologist. Medicina (Kaunas). 2014;50:249–54.

    Google Scholar

  32. Soares PBF, Soares CJ, Limirio PHJO, et al. Effect of ionizing radiation after-therapy interval on bone: histomorphometric and biomechanical characteristics. Clin Oral Investig. 2019;23:2785–93.

    PubMed  Google Scholar

  33. Israel O, Gorenberg M, Frenkel A, et al. Local and systemic effects of radiation on bone metabolism measured by quantitative SPECT. J Nucl Med. 1992;33:1774–80.

    CAS  PubMed  Google Scholar

  34. Lloyd S, Decker RH, Evans SB. Bone scan findings of chest wall pain syndrome after stereotactic body radiation therapy: implications for the pathophysiology of the syndrome. J Thorac Dis. 2013;5:E41–4.

    PubMed  PubMed Central  Google Scholar

  35. Park W, Huh SJ, Yang JH, et al. The implication of hot spots on bone scans within the irradiated field of breast cancer patients treated with mastectomy followed by radiotherapy. Ann Nucl Med. 2008;22:685–91.

    PubMed  Google Scholar

  36. Benfaremo D, Manfredi L, Luchetti MM, et al. Musculoskeletal and rheumatic diseases induced by immune checkpoint inhibitors: a review of the literature. Curr Drug Saf. 2018;13:150–64.

    CAS  PubMed  PubMed Central  Google Scholar

  37. Naidoo J, Cappelli LC, Forde PM, et al. Inflammatory arthritis: a newly recognized adverse event of immune checkpoint blockade. Oncologist. 2017;22:627–30.

    PubMed  PubMed Central  Google Scholar

  38. Smith MH, Bass AR. Arthritis after cancer immunotherapy: symptom duration and treatment response. Arthritis Care Res (Hoboken). 2019;71:362–6.

    CAS  Google Scholar

  39. Belkhir R, Burel SL, Dunogeant L, et al. Rheumatoid arthritis and polymyalgia rheumatica occurring after immune checkpoint inhibitor treatment. Ann Rheum Dis. 2017;76:1747–50.

    CAS  PubMed  Google Scholar

  40. Nobashi T, Mittra E. PD-1 blockade–induced inflammatory arthritis. Radiology. 2018;289:616.

    PubMed  Google Scholar

  41. Jiang W, Rixiati Y, Zhao B, Li Y, Tang C, Liu J. Incidence, prevalence, and outcomes of systemic malignancy with bone metastases. J Orthop Surg (Hong Kong). 2020;28:2309499020915989.

    Google Scholar

  42. Vaz S, Usmani S, Gnanasegaran G, et al. Molecular imaging of bone metastases using bone targeted tracers. Q J Nucl Med Mol Imaging. 2019;63:112–28.

    PubMed  Google Scholar

  43. Hillner BE, Siegel BA, Hanna L, et al. Impact of 18F-fluoride PET in patients with known prostate cancer: initial results from the National Oncologic PET Registry. J Nucl Med. 2014;55:574–81.

    CAS  PubMed  Google Scholar

  44. Drubach LA. Clinical utility of 18F NaF PET/CT in benign and malignant disorders. Pet Clin. 2012;7:293–301.

    PubMed  Google Scholar

  45. Usmani S, Ahmed N, Muzaffar S, et al. Spectrum of false positive 18F-sodium fluoride (NaF) bone PET/CT findings in oncology imaging; a narrative pictorial review of cases from a single institution. Hell J Nucl Med. 2020;23:67–75.

    PubMed  Google Scholar

Download references

Author information

Affiliations