Abstract
Introduction
Protective effect of royal jelly (RJ) on fluoride-induced nephrotoxicity was investigated in this study.
Methods
42 healthy male Wistar rats (n = 42, 8 weeks of age) were divided equally into 6 groups with 7 rats in each; (1) Group-1: Controls fed with standard diet; (2) Group-2: RJ [100 mg/kg] bw (body weight), by oral gavage; (3) Group-3: Fluoride [50 mg/kg] bw, in drinking water; (4) Group-4: Fluoride [100 mg/kg] bw, in drinking water; (5) Group-5: RJ [100 mg/kg] bw, by oral gavage + Fluoride [50 mg/kg] bw, in drinking water; (6) Group-6: RJ [100 mg/kg] bw, by oral gavage + Fluoride [100?mg/kg] bw, in drinking water. After 8 weeks, all rats were decapitated and their kidney tissues were removed for further analysis. The protein expression levels of caspase-3, caspase-6, caspase-9, Bcl-2, Bax, VEGF, GSK-3, BDNF, COX-2 and TNF-a proteins in kidney tissue were analysed by western blotting technique
Results
RJ increased Bcl-2, COX-2, GSK-3, TNF-a and VEGF protein levels and a decreased caspase-3, caspase -6, caspase-9, Bax and BDNF protein levels in fluoride-treated rats.
Conclusion
RJ application may have a promising therapeutical potential in the treatment of many diseases in the future by reducing kidney damage.
*Original abstract online at https://www.tandfonline.com/doi/abs/10.1080/1354750X.2022.2093977?journalCode=ibmk20
-
-
Epigallocatechin gallate supplementation protects against renal injury induced by fluoride intoxication in rats: Role of Nrf2/HO-1 signaling
Fluoride intoxication generates free radicals, causing oxidative stress that plays a critical role in the progression of nephropathy. In the present study, we hypothesized that epigallocatechin gallate (EGCG), found in green tea, protects the kidneys of rats treated with fluoride by preventing oxidative stress, inflammation, and apoptosis. Pretreatment of fluoride-treated
-
Protective properties of sesamin against fluoride-induced oxidative stress and apoptosis in kidney of carp (Cyprinus carpio) via JNK signaling pathway.
Sesamin, a major lignan derived from sesame seeds, has been reported to have many benefits and medicinal properties. However, its protective effects against fluoride-induced injury in kidney of fish have not been clarified. Previously we found that fluoride exposure caused damage and apoptosis in the kidneys of the common carp,
-
Effects of selenium intervention on chronic fluorosis-induced renal cell apoptosis in rats
This study aims to explore the effect of selenium in fluoride-induced renal cell apoptosis in rats and determine the optimal level of selenium in drinking water to prevent fluorosis. Experimental animals were divided into a control group, a sodium fluoride-treated group (NaF, 50 mg/L), three sodium selenite-treated groups (Na2SeO3, 0.375, 0.75,
-
In Vivo Comparison of the Phenotypic Aspects and Molecular Mechanisms of Two Nephrotoxic Agents, Sodium Fluoride and Uranyl Nitrate.
Because of their nephrotoxicity and presence in the environment, uranium (U) and fluoride (F) represent risks to the global population. There is a general lack of knowledge regarding the mechanisms of U and F nephrotoxicity and the underlying molecular pathways. The present study aims to compare the threshold of the
-
The potential risks of chronic fluoride exposure on nephrotoxic via altering glucolipid metabolism and activating autophagy and apoptosis in ducks.
Fluoride is one of the most widely distributed elements in nature, while some fluorine-containing compounds are toxic to several vertebrates at certain levels. The current study was performed to evaluate the nephrotoxic effects of fluoride exposure in ducks. The results showed that the renal index was decreased in NaF group,
Related Studies :
-
-
-
Fluoride Gels & Kidney Function
Scientists have found that the application of "Fluoride Gels" at the dental office causes very high spikes in the blood fluoride level. The high spikes in blood fluoride levels are a result of three factors: the high concentration of fluoride in the gel (= 12.3 mg of fluoride in each
-
Fluoride as a Cause of Kidney Disease in Animals
Because the kidney is exposed to higher concentrations of fluoride than all other soft tissues (with the exception of the pineal gland), there is concern that excess fluoride exposure may contribute to kidney disease - thus initiating a "vicious cycle" where the damaged kidneys increase the accumulation of fluoride, causing in
-
Fluoride as a Cause of Kidney Disease in Humans
Because the kidney is exposed to higher concentrations of fluoride than all other soft tissues (with the exception of the pineal gland), there is concern that excess fluoride exposure may contribute to kidney disease - thus initiating a "vicious cycle" where the damaged kidneys increase the accumulation of fluoride, causing
-
Fluoridation of drinking water and chronic kidney disease: Absence of evidence is not evidence of absence
A fairly substantial body of research indicates that patients with chronic renal insufficiency are at an increased risk of chronic fluoride toxicity. Patients with reduced glomerular filtration rates have a decreased ability to excrete fluoride in the urine. These patients may develop skeletal fluorosis even at 1 ppm fluoride in the drinking water.
-
Kidney: A potential target for fluoride toxicity
The kidneys are the organ responsible for clearing fluoride from the body. In the process of doing so, the kidneys are exposed to concentrations of fluoride that exceed, by a factor of 50, the concentration of fluoride in human blood. As such, the kidney have long been considered a potential
Related FAN Content :
-