Abstract

This study concerns effects on water-borne lead from combinations of chlorine (CL) or chloramines (CA) with fluosilicic acid (FSA) or sodium fluoride (NaF). CL is known to corrode brass, releasing lead from plumbing devices. It is known that CA and CL in different ratios with ammonia (NH) mobilize copper from brass, which we have found also enhances elution of lead from leaded brass alloys. Phase I involved leaded-brass 1/4 in. elbows pre-conditioned in DI water and soaked in static solutions containing various combinations of CL, CA, FSA, NaF, and ammonium fluosilicate. In Phase II 20 leaded-brass alloy water meters were installed in pipe loops. After pre-conditioning the meters with 200 flushings with 1.0 ppm CL water, seven different solutions were pumped for a period of 6 weeks. Water samples were taken for lead analysis three times per week after a 16-h stagnation period. In the static testing with brass elbows, exposure to the waters with CA+50% excess NH3+FSA, with CA and ammonium fluosilicate, and with CA+FSA resulted in the highest estimated lead concentrations. In the flow-through brass meter tests, waters with CL+FSA, with CL+NaF, and with CL alone produced the highest average lead concentration for the first 3-week period. Over the last 3 weeks the highest lead concentrations were produced by CL+NaF, followed by CL alone and CA+NH3+FSA. Over the first test week (after CL flushing concentrations were increased from 1.0 to 2.0 ppm) lead concentrations nearly doubled (from about 100 to nearly 200 ppb), but when FSA was also included, lead concentrations spiked to over 900 ppb. Lead concentrations from the CL-based waters appeared to be decreasing over the study period, while for the CA+NH3+FSA combination, lead concentrations seemed to be increasing with time.