Abstract

Fluoride exposure has raised global concerns due to its potential neurodevelopmental, systemic, and ecological impacts. This review consolidates advancements in fluoride toxicity, highlighting molecular mechanisms like mitochondrial dysfunction, autophagy disruption, and epigenetic alterations. Prenatal exposure is linked to cognitive deficits, while systemic effects include renal, hepatic, and thyroid dysfunction. Novel therapeutic strategies, such as natural compounds and microbiota modulation, offer promise, but translational barriers persist. Real-world co-exposures amplify toxicity, underscoring the need for interdisciplinary research. Environmental contamination challenges demand innovative remediation and global policy reform. This review identifies key knowledge gaps, advocating for longitudinal studies, multi-omics integration, and sustainable interventions to mitigate fluoride’s health burden and ecological risks. These findings lay a foundation for targeted public health strategies.

Data availability

No datasets were generated or analysed during the current study.

References

  • Adiyeke, E., Bakan, N., Uvez, A., Arslan, D. O., Kilic, S., Koc, B., et al. (2024). The effect of N-acetylcysteine on the neurotoxicity of sevoflurane in developing hippocampus cells. Neurotoxicology, 103, 96–104. https://doi.org/10.1016/J.NEURO.2024.05.006

    Article  CAS  Google Scholar

  • Adkins, E. A., Yolton, K., Strawn, J. R., Lippert, F., Ryan, P. H., & Brunst, K. J. (2022). Fluoride exposure during early adolescence and its association with internalizing symptoms. Environmental Research, 204(Pt C). https://doi.org/10.1016/J.ENVRES.2021.112296

  • Avila-Rojas, S. H., Aparicio-Trejo, O. E., Sanchez-Guerra, M. A., & Barbier, O. C. (2022). Effects of fluoride exposure on mitochondrial function: Energy metabolism, dynamics, biogenesis and mitophagy. Environmental Toxicology and Pharmacology, 94,. https://doi.org/10.1016/J.ETAP.2022.103916

  • Bartos, M., Gumilar, F., Baier, C. J., Dominguez, S., Bras, C., Cancela, L. M., et al. (2022). Rat developmental fluoride exposure affects retention memory, leads to a depressive-like behavior, and induces biochemical changes in offspring rat brains. Neurotoxicology, 93, 222–232. https://doi.org/10.1016/J.NEURO.2022.10.006

    Article  CAS  Google Scholar

  • Cao, Q., Li, R., Fu, R., Zhang, X., Yue, B., Wang, J., et al. (2020). Intestinal fungal dysbiosis in mice induced by fluoride. Chemosphere, 245, 125617. https://doi.org/10.1016/J.CHEMOSPHERE.2019.125617

    Article  CAS  Google Scholar

  • Chen, L., Gu, T., Wu, T., Ding, L., Ge, Q., Zhang, Y., & Ma, S. (2022). Proteotranscriptomic Integration analyses reveals new mechanistic insights regarding Bombyx mori fluorosis. Food and Chemical Toxicology?: An International Journal Published for the British Industrial Biological Research Association, 169,. https://doi.org/10.1016/J.FCT.2022.113414

  • Chen, G., Peng, Y., Huang, Y., Xie, M., Dai, Z., Cai, H., et al. (2023a). Fluoride induced leaky gut and bloom of Erysipelatoclostridium ramosum mediate the exacerbation of obesity in high-fat-diet fed mice. Journal of Advanced Research, 50, 35–54. https://doi.org/10.1016/J.JARE.2022.10.010

    Article  CAS  Google Scholar

  • Chen, L., Jia, P., Liu, Y., Wang, R., Yin, Z., Hu, D., et al. (2023). Fluoride exposure disrupts the cytoskeletal arrangement and ATP synthesis of HT-22 cell by activating the RhoA/ROCK signaling pathway. Ecotoxicology and Environmental Safety, 254,. https://doi.org/10.1016/J.ECOENV.2023.114718

  • Danziger, J., Dodge, L. E., & Hu, H. (2022). Role of renal function in the association of drinking water fluoride and plasma fluoride among adolescents in the United States: NHANES, 2013–2016. Environmental Research, 213,. https://doi.org/10.1016/J.ENVRES.2022.113603

  • Dewey, D., England-Mason, G., Ntanda, H., Deane, A. J., Jain, M., Barnieh, N., et al. (2023). Fluoride exposure during pregnancy from a community water supply is associated with executive function in preschool children: A prospective ecological cohort study. The Science of the Total Environment, 891,. https://doi.org/10.1016/J.SCITOTENV.2023.164322

  • Dey Bhowmik, A., Das, T., & Chattopadhyay, A. (2023). Chronic exposure to environmentally relevant concentration of fluoride impairs osteoblast’s collagen synthesis and matrix mineralization: Involvement of epigenetic regulation in skeletal fluorosis. Environmental Research, 236(Pt 2). https://doi.org/10.1016/J.ENVRES.2023.116845

  • Dhara, K., Saha, S., Chukwuka, A. V., Pal, P., Saha, N. C., & Faggio, C. (2022). Fluoride sensitivity in freshwater snail, Bellamya bengalensis (Lamarck, 1882): An integrative biomarker response assessment of behavioral indices, oxygen consumption, haemocyte and tissue protein levels under environmentally relevant exposure concentrations. Environmental Toxicology and Pharmacology, 89, 103789. https://doi.org/10.1016/J.ETAP.2021.103789

    Article  CAS  Google Scholar

  • Dharmani, A. B., Verma, M., Rani, S., Narang, A., Singh, M. R., Saya, L., & Hooda, S. (2024). Unravelling groundwater contamination and health-related implications in semi-arid and cold regions of India. Journal of Contaminant Hydrology, 261, 104303. https://doi.org/10.1016/J.JCONHYD.2024.104303

    Article  Google Scholar

  • Dominguez, S., Lencinas, I., Bartos, M., Gallegos, C., Bras, C., Mónaco, N., et al. (2021). Neurobehavioral and neurochemical effects in rats offspring co-exposed to arsenic and fluoride during development. Neurotoxicology, 84, 30–40. https://doi.org/10.1016/J.NEURO.2021.02.004

    Article  CAS  Google Scholar

  • Dondossola, E. R., Pacheco, S. D., Visentin, S. C., Mendes, N. V., Baldin, S. L., Bernardo, H. T., et al. (2022). Prolonged fluoride exposure alters neurotransmission and oxidative stress in the zebrafish brain. Neurotoxicology, 89, 92–98. https://doi.org/10.1016/J.NEURO.2022.01.008

    Article  CAS  Google Scholar

  • Dórea, J. G. (2021). Exposure to environmental neurotoxic substances and neurodevelopment in children from Latin America and the Caribbean. Environmental research, 192,. https://doi.org/10.1016/J.ENVRES.2020.110199

  • Du, Y., Feng, Z., Gao, M., Wang, A., Yan, X., Chen, R., et al. (2024). Impaired neurogenesis induced by fluoride via the Notch1 signaling and effects of carvacrol intervention. Environmental Pollution, 356, 124371. https://doi.org/10.1016/J.ENVPOL.2024.124371

    Article  CAS  Google Scholar

  • Ekamparam, A. S. S., Khaitan, H., Nimesh, V., & Singh, A. (2023). Relative extents, mechanisms, and kinetics of fluoride removal from synthetic groundwater by prevalent sorbents. Chemosphere, 342, 140161. https://doi.org/10.1016/J.CHEMOSPHERE.2023.140161

    Article  CAS  Google Scholar

  • Farmus, L., Till, C., Green, R., Hornung, R., Martinez Mier, E. A., Ayotte, P., et al. (2021). Critical windows of fluoride neurotoxicity in Canadian children. Environmental Research, 200,. https://doi.org/10.1016/J.ENVRES.2021.111315

  • Fu, R., Niu, R., Zhao, F., Wang, J., Cao, Q., Yu, Y., et al. (2022). Exercise alleviated intestinal damage and microbial disturbances in mice exposed to fluoride. Chemosphere, 288, 132658. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132658

    Article  CAS  Google Scholar

  • Garcia, A. L. H., de Souza, M. R., Picinini, J., Soares, S., Rohr, P., Linden, R., et al. (2024). Unraveling gene expression and genetic instability in dental fluorosis: Investigating the impact of chronic fluoride exposure. The Science of the Total Environment, 906,. https://doi.org/10.1016/J.SCITOTENV.2023.167393

  • Ghaemi, Z., & Noshadi, M. (2024). Evaluation of fluoride exposure using disability-adjusted life years and health risk assessment in south-western Iran: A novel Monte Carlo simulation. Ecotoxicology and Environmental Safety, 282,. https://doi.org/10.1016/J.ECOENV.2024.116705

  • Godebo, T. R., Jeuland, M., Tekle-Haimanot, R., Alemayehu, B., Shankar, A., Wolfe, A., & Phan, N. (2023). Association between fluoride exposure in drinking water and cognitive deficits in children: A pilot study. Neurotoxicology and Teratology, 100,. https://doi.org/10.1016/J.NTT.2023.107293

  • Goodman, C., Hall, M., Green, R., Hornung, R., Martinez-Mier, E. A., Lanphear, B., & Till, C. (2022a). Maternal fluoride exposure, fertility and birth outcomes: The MIREC cohort. Environmental Advances, 7. https://doi.org/10.1016/J.ENVADV.2021.100135

  • Goodman, C. V., Bashash, M., Green, R., Song, P., Peterson, K. E., Schnaas, L., et al. (2022b). Domain-specific effects of prenatal fluoride exposure on child IQ at 4, 5, and 6–12 years in the ELEMENT cohort. Environmental Research, 211. https://doi.org/10.1016/J.ENVRES.2022.112993

  • Gopnar, V. V., Rakshit, D., Bandakinda, M., Kulhari, U., Sahu, B. D., & Mishra, A. (2023). Fisetin attenuates arsenic and fluoride subacute co-exposure induced neurotoxicity via regulating TNF-? mediated activation of NLRP3 inflammasome. Neurotoxicology, 97, 133–149. https://doi.org/10.1016/J.NEURO.2023.06.006

    Article  CAS  Google Scholar

  • Griebel-Thompson, A. K., Sands, S., Chollet-Hinton, L., Christifano, D., Sullivan, D. K., Hull, H., & Carlson, S. E. (2023). A scoping review of iodine and fluoride in pregnancy in relation to maternal thyroid function and offspring neurodevelopment. Advances in Nutrition (Bethesda, Md.), 14(2), 317–338. https://doi.org/10.1016/J.ADVNUT.2023.01.003

    Article  CAS  Google Scholar

  • Hall, M., Lanphear, B., Chevrier, J., Hornung, R., Green, R., Goodman, C., et al. (2023). Fluoride exposure and hypothyroidism in a Canadian pregnancy cohort. The Science of the total environment, 869,. https://doi.org/10.1016/J.SCITOTENV.2022.161149

  • Han, X., Tang, Y., Zhang, Y., Zhang, J., Hu, Z., Xu, W., et al. (2022). Impaired V-ATPase leads to increased lysosomal pH, results in disrupted lysosomal degradation and autophagic flux blockage, contributes to fluoride-induced developmental neurotoxicity. Ecotoxicology and Environmental Safety, 236, 113500. https://doi.org/10.1016/J.ECOENV.2022.113500

    Article  CAS  Google Scholar

  • Hassan, N. H., & Amin, M. A. (2023). Resveratrol thyro-protective role in fluorosis rat model (histo-morphometric, biochemical and ultrastructural study). Tissue & cell, 80,. https://doi.org/10.1016/J.TICE.2022.101986

  • He, W. W., Zeng, X. X., Qi, X. L., Gui, C. Z., Liao, W., Tu, X., et al. (2024). Regulating effect of miR-132–3p on the changes of MAPK pathway in rat brains and SH-SY5Y cells exposed to excessive fluoride by targeting expression of MAPK1. Ecotoxicology and Environmental Safety, 279,. https://doi.org/10.1016/J.ECOENV.2024.116467

  • Hu, Z., Xu, W., Zhang, J., Tang, Y., Xing, H., Xu, P., et al. (2023). TFE3-mediated impairment of lysosomal biogenesis and defective autophagy contribute to fluoride-induced hepatotoxicity. Ecotoxicology and Environmental Safety, 253, 114674. https://doi.org/10.1016/J.ECOENV.2023.114674

    Article  CAS  Google Scholar

  • Ibarluzea, J., Gallastegi, M., Santa-Marina, L., Jiménez Zabala, A., Arranz, E., Molinuevo, A., et al. (2022). Prenatal exposure to fluoride and neuropsychological development in early childhood: 1-to 4 years old children. Environmental Research, 207,. https://doi.org/10.1016/J.ENVRES.2021.112181

  • Ibarluzea, J., Subiza-Pérez, M., Arregi, A., Molinuevo, A., Arranz-Freijo, E., Sánchez-de Miguel, M., et al. (2023). Association of maternal prenatal urinary fluoride levels with ADHD symptoms in childhood. Environmental Research, 235,. https://doi.org/10.1016/J.ENVRES.2023.116705

  • Kampouri, M., Zander, E., Gustin, K., Sandin, A., Barman, M., Sandberg, A. S., et al. (2024). Associations of gestational and childhood exposure to lead, cadmium, and fluoride with cognitive abilities, behavior, and social communication at 4 years of age: NICE birth cohort study. Environmental Research, 263(Pt 2). https://doi.org/10.1016/J.ENVRES.2024.120123

  • Karaman, M., Toraman, E., Sulukan, E., Baran, A., Bolat, ?, Y?ld?r?m, S., et al. (2023). Fluoride exposure causes behavioral, molecular and physiological changes in adult zebrafish (Danio rerio) and their offspring. Environmental Toxicology and Pharmacology, 97,. https://doi.org/10.1016/J.ETAP.2022.104044

  • Khan, M. U., Basist, P., Gaurav, Zahiruddin, S., Penumallu, N. R., & Ahmad, S. (2024). Ameliorative effect of traditional polyherbal formulation on TNF-?, IL-1? and Caspase-3 expression in kidneys of wistar rats against sodium fluoride induced oxidative stress. Journal of Ethnopharmacology, 318(Pt A). https://doi.org/10.1016/J.JEP.2023.116900

  • Krzeczkowski, J. E., Hall, M., Saint-Amour, D., Oulhote, Y., McGuckin, T., Goodman, C. V., et al. (2024). Prenatal fluoride exposure, offspring visual acuity and autonomic nervous system function in 6-month-old infants. Environment International, 183,. https://doi.org/10.1016/J.ENVINT.2023.108336

  • Kumar, P., Kumar, M., Barnawi, A. B., Maurya, P., Singh, S., Shah, D., et al. (2024a). A review on fluoride contamination in groundwater and human health implications and its remediation: A sustainable approaches. Environmental Toxicology and Pharmacology, 106, 104356. https://doi.org/10.1016/J.ETAP.2023.104356

    Article  CAS  Google Scholar

  • Kumar, S., Swamy, R. S., Bhushan, R., Chhabra, V., Shenoy, S., Murti, K., et al. (2024). Molecular and immunohistochemical alterations in fluoride-induced neurological impediment in adult rats. Journal of Trace Elements in Medicine and Biology?: Organ of the Society for Minerals and Trace Elements (GMS), 86,. https://doi.org/10.1016/J.JTEMB.2024.127511

  • Li, W., Lu, L., Zhu, D., Liu, J., Shi, Y., Zeng, H., et al. (2022). Gestational exposure to fluoride impairs cognition in C57 BL/6 J male offspring mice via the p-Creb1-BDNF-TrkB signaling pathway. Ecotoxicology and Environmental Safety, 239,. https://doi.org/10.1016/J.ECOENV.2022.113682

  • Li, D., Zhao, Q., Xie, L., Wang, C., Tian, Z., Tang, H., et al. (2023). Fluoride impairs mitochondrial translation by targeting miR-221–3p/c-Fos/RMND1 axis contributing to neurodevelopment defects. The Science of the Total Environment, 869,. https://doi.org/10.1016/J.SCITOTENV.2023.161738

  • Li, L., Xin, J., Wang, H., Wang, Y., Peng, W., Sun, N., et al. (2023b). Fluoride disrupts intestinal epithelial tight junction integrity through intracellular calcium-mediated RhoA/ROCK signaling and myosin light chain kinase. Ecotoxicology and Environmental Safety, 257, 114940. https://doi.org/10.1016/J.ECOENV.2023.114940

    Article  CAS  Google Scholar

  • Li, Y., Zhang, M., Mi, W., Ji, L., He, Q., Xie, S., et al. (2024). Spatial distribution of groundwater fluoride and arsenic and its related disease in typical drinking endemic regions. The Science of the Total Environment, 906,. https://doi.org/10.1016/J.SCITOTENV.2023.167716

  • Lingli, C., Hongmei, N., Penghuan, J., Hongli, Z., Yuye, L., Rui, W., et al. (2023). Inhibition of RhoA/ROCK signalling pathway activity improves neural damage and cognitive deficits in the fluorosis model. Ecotoxicology and Environmental Safety, 266, 115554. https://doi.org/10.1016/J.ECOENV.2023.115554

    Article  Google Scholar

  • Mammadov, M., Emon, S. T., Akar, E., Akakin, D., & ?ener, D. (2023). Effects of sodium fluoride on neural tube development in chick embryos. Neuro-Chirurgie, 69(6). https://doi.org/10.1016/J.NEUCHI.2023.101502

  • Martínez-Oviedo, A., Monterrubio-Martínez, E., & Tuxpan-Vargas, J. (2024). Assessing the water contaminants in San Luis Potosi and its effects on its inhabitants: An interdisciplinary study on environmental contamination and public health. Journal of Hazardous Materials, 464, 132828. https://doi.org/10.1016/J.JHAZMAT.2023.132828

    Article  Google Scholar

  • Mo, Z., Wang, J., Meng, X., Li, A., Li, Z., Que, W., et al. (2023). The dose-response effect of fluoride exposure on the gut microbiome and its functional pathways in rats. Metabolites, 13(11), 1159. https://doi.org/10.3390/METABO13111159/S1

    Article  CAS  Google Scholar

  • Pal, P., Jha, N. K., Pal, D., Jha, S. K., Anand, U., Gopalakrishnan, A. V., et al. (2022). Molecular basis of fluoride toxicities: Beyond benefits and implications in human disorders. Genes & Diseases, 10(4), 1470–1493. https://doi.org/10.1016/J.GENDIS.2022.09.004

    Article  Google Scholar

  • Philipsborn, R. P., Cowenhoven, J., Bole, A., Balk, S. J., & Bernstein, A. (2021). A pediatrician’s guide to climate change-informed primary care. Current Problems in Pediatric and Adolescent Health Care, 51(6). https://doi.org/10.1016/J.CPPEDS.2021.101027

  • Rashid, A., Ayub, M., Gao, X., Xu, Y., Ullah, Z., Zhu, Y. G., et al. (2024). Unraveling the impact of high arsenic, fluoride and microbial population in community tubewell water around coal mines in a semiarid region: Insight from health hazards, and geographic information systems. Journal of Hazardous Materials, 480,. https://doi.org/10.1016/J.JHAZMAT.2024.136064

  • Ruehlmann, A. K., Cecil, K. M., Lippert, F., Yolton, K., Ryan, P. H., & Brunst, K. J. (2024). Epigenome-wide association study of fluoride exposure during early adolescence and DNA methylation among U.S. children. The Science of the Total Environment, 948,. https://doi.org/10.1016/J.SCITOTENV.2024.174916

  • Saha, R., Wankhede, T., Majumdar, R., & Das, I. C. (2024). Pan India fluoride hazard assessment in groundwater. Journal of Hazardous Materials, 478, 135543. https://doi.org/10.1016/J.JHAZMAT.2024.135543

    Article  CAS  Google Scholar

  • Solanki, Y. S., Agarwal, M., Gupta, A. B., Gupta, S., & Shukla, P. (2022). Fluoride occurrences, health problems, detection, and remediation methods for drinking water: A comprehensive review. The Science of the Total Environment, 807(Pt 1). https://doi.org/10.1016/J.SCITOTENV.2021.150601

  • Sprong, C., te Biesebeek, J. D., Chatterjee, M., Wolterink, G., van den Brand, A., Blaznik, U., et al. (2023). A case study of neurodevelopmental risks from combined exposures to lead, methyl-mercury, inorganic arsenic, polychlorinated biphenyls, polybrominated diphenyl ethers and fluoride. International Journal of Hygiene and Environmental Health, 251,. https://doi.org/10.1016/J.IJHEH.2023.114167

  • Tang, Y., Zhang, J., Hu, Z., Xu, W., Xu, P., Ma, Y., et al. (2023). PRKAA1 induces aberrant mitophagy in a PINK1/Parkin-dependent manner, contributing to fluoride-induced developmental neurotoxicity. Ecotoxicology and Environmental Safety, 255, 114772. https://doi.org/10.1016/J.ECOENV.2023.114772

    Article  CAS  Google Scholar

  • Tang, H., Hou, H., Song, L., Tian, Z., Liu, W., Xia, T., & Wang, A. (2024). The role of mTORC1/TFEB axis mediated lysosomal biogenesis and autophagy impairment in fluoride neurotoxicity and the intervention effects of resveratrol. Journal of Hazardous Materials, 467, 133634. https://doi.org/10.1016/J.JHAZMAT.2024.133634

    Article  CAS  Google Scholar

  • Till, C., Green, R., Flora, D., Hornung, R., Martinez-Mier, E. A., Blazer, M., et al. (2020). Fluoride exposure from infant formula and child IQ in a Canadian birth cohort. Environment international, 134,. https://doi.org/10.1016/J.ENVINT.2019.105315

  • Veneri, F., Vinceti, M., Generali, L., Giannone, M. E., Mazzoleni, E., Birnbaum, L. S., et al. (2023). Fluoride exposure and cognitive neurodevelopment: Systematic review and dose-response meta-analysis. Environmental Research, 221,. https://doi.org/10.1016/J.ENVRES.2023.115239

  • Wang, D., Cao, L., Zhou, X., Wang, G., Ma, Y., Hao, X., & Fan, H. (2022). Mitigation of honokiol on fluoride-induced mitochondrial oxidative stress, mitochondrial dysfunction, and cognitive deficits through activating AMPK/PGC-1?/Sirt3. Journal of Hazardous Materials, 437,. https://doi.org/10.1016/J.JHAZMAT.2022.129381

  • Wang, H., Yang, L., Gao, P., Deng, P., Yue, Y., Tian, L., et al. (2022b). Fluoride exposure induces lysosomal dysfunction unveiled by an integrated transcriptomic and metabolomic study in bone marrow mesenchymal stem cells. Ecotoxicology and Environmental Safety, 239, 113672. https://doi.org/10.1016/J.ECOENV.2022.113672

    Article  CAS  Google Scholar

  • Wang, Dongxu, Yin, K., Zhang, Y., Lu, H., Hou, L., Zhao, H., & Xing, M. (2023). Fluoride induces neutrophil extracellular traps and aggravates brain inflammation by disrupting neutrophil calcium homeostasis and causing ferroptosis. Environmental Pollution (Barking, Essex?: 1987), 331(Pt 1). https://doi.org/10.1016/J.ENVPOL.2023.121847

  • Wei, Y., Zhu, J., & Wetzstein, S. A. (2021). Plasma and water fluoride levels and hyperuricemia among adolescents: A cross-sectional study of a nationally representative sample of the United States for 2013–2016. Ecotoxicology and Environmental Safety, 208,. https://doi.org/10.1016/J.ECOENV.2020.111670

  • Wei, Y. L., Lin, X. C., Liu, Y. Y., Lei, Y. Q., Zhuang, X. D., Zhang, H. T., & Wang, X. R. (2024). Effects of water fluoridation on early embryonic development of zebrafish. Ecotoxicology and Environmental Safety, 270, 115907. https://doi.org/10.1016/J.ECOENV.2023.115907

    Article  CAS  Google Scholar

  • Wu, S., Wang, Y., Iqbal, M., Mehmood, K., Li, Y., Tang, Z., & Zhang, H. (2022). Challenges of fluoride pollution in environment: Mechanisms and pathological significance of toxicity – A review. Environmental Pollution (Barking, Essex?: 1987), 304. https://doi.org/10.1016/J.ENVPOL.2022.119241

  • Xiang, J., Ma, Y. L., Zou, J., Zeng, X. X., Xiao, X., Yu, Y. L., et al. (2023). Extract of Ginkgo biloba leaves attenuates neurotoxic damages in rats and SH-SY5Y cells exposed to a high level of fluoride. Journal of Trace Elements in Medicine and Biology?: Organ of the Society for Minerals and Trace Elements (GMS), 75,. https://doi.org/10.1016/J.JTEMB.2022.127088

  • Xiang, J., Qi, X. L., Cao, K., Ran, L. Y., Zeng, X. X., Xiao, X., et al. (2024). Exposure to fluoride exacerbates the cognitive deficit of diabetic patients living in areas with endemic fluorosis, as well as of rats with type 2 diabetes induced by streptozotocin via a mechanism that may involve excessive activation of the poly(ADP ribose) polymerase-1/P53 pathway. The Science of the Total Environment, 912,. https://doi.org/10.1016/J.SCITOTENV.2023.169512

  • Xin, J., Zhu, B., Wang, H., Zhang, Y., Sun, N., Cao, X., et al. (2023). Prolonged fluoride exposure induces spatial-memory deficit and hippocampal dysfunction by inhibiting small heat shock protein 22 in mice. Journal of Hazardous Materials, 456,. https://doi.org/10.1016/J.JHAZMAT.2023.131595

  • Y?ld?z, M. O., Çelik, H., Caglayan, C., Kandemir, F. M., Gür, C., Bayav, ?, et al. (2022). Neuromodulatory effects of hesperidin against sodium fluoride-induced neurotoxicity in rats: Involvement of neuroinflammation, endoplasmic reticulum stress, apoptosis and autophagy. Neurotoxicology, 90, 197–204. https://doi.org/10.1016/J.NEURO.2022.04.002

    Article  Google Scholar

  • Zhang, C., Yang, Y., Gao, Y., & Sun, D. (2022). NaF-induced neurotoxicity via activation of the IL-1?/JNK signaling pathway. Toxicology, 469,. https://doi.org/10.1016/J.TOX.2022.153132

  • Zhang, Y., Han, X., Tang, Y., Zhang, J., Hu, Z., Xu, W., et al. (2022b). Weakened interaction of ATG14 and the SNARE complex blocks autophagosome-lysosome fusion contributes to fluoride-induced developmental neurotoxicity. Ecotoxicology and Environmental Safety, 230, 113108. https://doi.org/10.1016/J.ECOENV.2021.113108

    Article  CAS  Google Scholar

  • Zhang, J., Tang, Y., Hu, Z., Xu, W., Ma, Y., Xu, P., et al. (2023a). The inhibition of TRPML1/TFEB leads to lysosomal biogenesis disorder, contributes to developmental fluoride neurotoxicity. Ecotoxicology and Environmental Safety, 250, 114511. https://doi.org/10.1016/J.ECOENV.2023.114511

    Article  CAS  Google Scholar

  • Zhang, X. L., Yu, S. N., Qu, R. D., Zhao, Q. Y., Pan, W. Z., Chen, X. S., et al. (2023b). Mechanism of learning and memory impairment in rats exposed to arsenic and/or fluoride based on microbiome and metabolome. Biomedical and Environmental Sciences?: BES, 36(3), 253–268. https://doi.org/10.3967/BES2023.028

    Article  CAS  Google Scholar

  • Zhang, Q., Fei, X., Li, Y., Zhang, H., Chen, L., Ruan, J., & Dong, N. (2024a). Epigallocatechin-3-gallate attenuates fluoride induced apoptosis via PI3K/FoxO1 pathway in ameloblast-like cells. Toxicon, 247, 107857. https://doi.org/10.1016/J.TOXICON.2024.107857

    Article  CAS  Google Scholar

  • Zhang, Y., Gao, Y., & Liu, X. (2024b). Focus on cognitive impairment induced by excessive fluoride: An update review. Neuroscience, 558, 22–29. https://doi.org/10.1016/J.NEUROSCIENCE.2024.08.011

    Article  CAS  Google Scholar

  • Zhao, L., Yu, C., Lv, J., Cui, Y., Wang, Y., Hou, C., et al. (2021). Fluoride exposure, dopamine relative gene polymorphism and intelligence: A cross-sectional study in China. Ecotoxicology and Environmental Safety, 209,. https://doi.org/10.1016/J.ECOENV.2020.111826

  • Zhao, S., Guo, J., Xue, H., Meng, J., Xie, D., Liu, X., et al. (2022). Systematic impacts of fluoride exposure on the metabolomics of rats. Ecotoxicology and Environmental Safety, 242,. https://doi.org/10.1016/J.ECOENV.2022.113888

  • Zhao, T., Lv, J., Peng, M., Mi, J., Zhang, S., Liu, J., et al. (2023). Fecal microbiota transplantation and short-chain fatty acids improve learning and memory in fluorosis mice by BDNF-PI3K/AKT pathway. Chemico-Biological Interactions, 387,. https://doi.org/10.1016/J.CBI.2023.110786

  • Zhao, P., Yuan, Q., Liang, C., Ma, Y., Zhu, X., Hao, X., et al. (2024a). GPX4 degradation contributes to fluoride-induced neuronal ferroptosis and cognitive impairment via mtROS-chaperone-mediated autophagy. Science of the Total Environment, 927, 172069. https://doi.org/10.1016/J.SCITOTENV.2024.172069

    Article  CAS  Google Scholar

  • Zhao, Q., Zhou, G. Y., Niu, Q., Chen, J. W., Li, P., Tian, Z. Y., et al. (2024). SIRT1, a target of miR-708-3p, alleviates fluoride-induced neuronal damage via remodeling mitochondrial network dynamics. Journal of Advanced Research, 65, 197–210. https://doi.org/10.1016/J.JARE.2023.11.032

    Article  CAS  Google Scholar

  • Zhao, Q., Pan, W., Li, J., Yu, S., Liu, Y., Zhang, X., et al. (2022). Effects of neuron autophagy induced by arsenic and fluoride on spatial learning and memory in offspring rats. Chemosphere, 308(Pt 2). https://doi.org/10.1016/J.CHEMOSPHERE.2022.136341

  • Zhou, W., Luo, W., Liu, D., Canavese, F., Li, L., & Zhao, Q. (2022). Fluoride increases the susceptibility of developmental dysplasia of the hip via increasing capsular laxity triggered by cell apoptosis and oxidative stress in vivo and in vitro. Ecotoxicology and Environmental Safety, 234, 113408. https://doi.org/10.1016/J.ECOENV.2022.113408

    Article  CAS  Google Scholar

  • Zhu, X., Zhang, S., Liu, X., Li, H., Zhu, X., Zhang, J., et al. (2024). Integrative transcriptome and metabolome analysis of fluoride exposure induced developmental neurotoxicity in mouse brain. Ecotoxicology and Environmental Safety, 269, 115752. https://doi.org/10.1016/J.ECOENV.2023.115752

    Article  CAS  Google Scholar

  • Zhu, S. Q., Liu, J., Han, B., Zhao, W. peng, Zhou, B. hua, Zhao, J., & Wang, H. wei. (2022). Fluoride exposure cause colon microbiota dysbiosis by destroyed microenvironment and disturbed antimicrobial peptides expression in colon. Environmental Pollution, 292(Pt B). https://doi.org/10.1016/j.envpol.2021.118381

ABSTRACT ONLINE AT  https://link.springer.com/article/10.1007/s10661-025-14175-3