Research Studies
Study Tracker
Fluoride Alters Signaling Pathways Associated with the Initiation of Dentin Mineralization in Enamel Fluorosis Susceptible Mice.Abstract
Fluoride can alter the formation of mineralized tissues, including enamel, dentin, and bone. Dentin fluorosis occurs in tandem with enamel fluorosis. However, the pathogenesis of dentin fluorosis and its mechanisms are poorly understood. In this study, we report the effects of fluoride on the initiation of dentin matrix formation and odontoblast function. Mice from two enamel fluorosis susceptible strains (A/J and C57BL/6J) were given either 0 or 50 ppm fluoride in drinking water for 4 weeks. In both mouse strains, there was no overall change in dentin thickness, but fluoride treatment resulted in a significant increase in the thickness of the predentin layer. The lightly mineralized layer (LL), which lies at the border between predentin and fully mineralized dentin and is associated with dentin phosphoprotein (DPP), was absent in fluoride exposed mice. Consistent with a possible reduction of DPP, fluoride-treated mice showed reduced immunostaining for dentin sialoprotein (DSP). Fluoride reduced RUNX2, the transcription regulator of dentin sialophosphoprotein (DSPP), that is cleaved to form both DPP and DSP. In fluoride-treated mouse odontoblasts, the effect of fluoride was further seen in the upstream of RUNX2 as the reduced nuclear translocation of B-catenin and phosphorylated p65/NFkB. In vitro, MD10-F2 pre-odontoblast cells showed inhibition of the Dspp mRNA level in the presence of 10 uM fluoride, and qPCR analysis showed a significantly downregulated level of mRNAs for RUNX2, B-catenin, and Wnt10b. These findings indicate that in mice, systemic exposure to excess fluoride resulted in reduced Wnt/B-catenin signaling in differentiating odontoblasts to downregulate DSPP production via RUNX2.
*Original abstract online at https://link.springer.com/article/10.1007%2Fs12011-020-02434-y
References
- 1.
Fejerskov O, Larsen MJ, Josephsen K, Thylstrup A (1979) Effect of long-term administration of fluoride on plasma fluoride and calcium in relation to forming enamel and dentin in rats. Scand J Dent Res 87(2):98–104
- 2.
Vieira A, Hancock R, Dumitriu M, Schwartz M, Limeback H, Grynpas M (2005) How does fluoride affect dentin microhardness and mineralization? J Dent Res 84(10):951–957
- 3.
Kierdorf U, Kierdorf H, Fejerskov O (1993) Fluoride-induced developmental changes in enamel and dentine of European roe deer (Capreolus capreolus L.) as a result of environmental pollution. Arch Oral Biol 38(12):1071–1081
- 4.
Yaeger JA (1966) The effects of high fluoride diets on developing enamel and dentin in the incisors of rats. Am J Anat 118(2):665–683. https://doi.org/10.1002/aja.1001180219
- 5.
Fejerskov O, Thylstrup A, Larsen MJ (1977) Clinical and structural features and possible pathogenic mechanisms of dental fluorosis. Scand J Dent Res 85(7):510–534
- 6.
Fejerskov O, Yaeger JA, Thylstrup A (1979) Microradiography of the effect of acute and chronic administration of fluoride on human and rat dentine and enamel. Arch Oral Biol 24(2):123–130
- 7.
Rojas-Sanchez F, Alaminos M, Campos A, Rivera H, Sanchez-Quevedo MC (2007) Dentin in severe fluorosis: a quantitative histochemical study. J Dent Res 86(9):857–861
- 8.
Nelson DG, Coote GE, Vickridge IC, Suckling G (1989) Proton microprobe determination of fluorine profiles in the enamel and dentine of erupting incisors from sheep given low and high daily doses of fluoride. Arch Oral Biol 34(6):419–429
- 9.
Waidyasekera K, Nikaido T, Weerasinghe D, Watanabe A, Ichinose S, Tay F, Tagami J (2010) Why does fluorosed dentine show a higher susceptibility for caries: an ultra-morphological explanation. J Med Dent Sci 57(1):17–23
- 10.
Waidyasekera PG, Nikaido T, Weerasinghe DD, Wettasinghe KA, Tagami J (2007) Caries susceptibility of human fluorosed enamel and dentine. J Dent 35(4):343–349. https://doi.org/10.1016/j.jdent.2006.10.008
- 11.
Milan AM, Waddington RJ, Embery G (1999) Altered phosphorylation of rat dentine phosphoproteins by fluoride in vivo. Calcif Tissue Int 64(3):234–238
- 12.
Li P, Xue Y, Zhang W, Teng F, Sun Y, Qu T, Chen X, Cheng X, Song B, Luo W, Yu Q (2013) Sodium fluoride induces apoptosis in odontoblasts via a JNK-dependent mechanism. Toxicology 308:138–145. https://doi.org/10.1016/j.tox.2013.03.016
- 13.
Cvikl B, Lussi A, Carvalho TS, Moritz A, Gruber R (2018) Stannous chloride and stannous fluoride are inhibitors of matrix metalloproteinases. J Dent 78:51–58. https://doi.org/10.1016/j.jdent.2018.08.002
- 14.
Wurtz T, Houari S, Mauro N, MacDougall M, Peters H, Berdal A (2008) Fluoride at non-toxic dose affects odontoblast gene expression in vitro. Toxicology 249(1):26–34. https://doi.org/10.1016/j.tox.2008.04.013
- 15.
Houari S, Wurtz T, Ferbus D, Chateau D, Dessombz A, Berdal A, Babajko S (2014) Asporin and the mineralization process in fluoride-treated rats. J Bone Miner Res 29(6):1446–1455. https://doi.org/10.1002/jbmr.2153
- 16.
Ruch JV, Lesot H, Begue-Kirn C (1995) Odontoblast differentiation. Int J Dev Biol 39(1):51–68
- 17.
Miyazaki T, Kanatani N, Rokutanda S, Yoshida C, Toyosawa S, Nakamura R, Takada S, Komori T (2008) Inhibition of the terminal differentiation of odontoblasts and their transdifferentiation into osteoblasts in Runx2 transgenic mice. Arch Histol Cytol 71(2):131–146
- 18.
Yun C-Y, Choi H, You Y-J, Yang J-Y, Baek J-A, Cho E-S (2016) Requirement of Smad4-mediated signaling in odontoblast differentiation and dentin matrix formation. Anat Cell Biol 49(3):199–205
- 19.
Yan D, Willett TL, Gu XM, Martinez-Mier EA, Sardone L, McShane L, Grynpas M, Everett ET (2011) Phenotypic variation of fluoride responses between inbred strains of mice. Cells Tissues Organs 194(2–4):261–267. https://doi.org/10.1159/000324224
- 20.
Everett ET (2011) Fluoride’s effects on the formation of teeth and bones, and the influence of genetics. J Dent Res 90(5):552–560. https://doi.org/10.1177/0022034510384626
- 21.
Kawamoto T (2003) Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Arch Histol Cytol 66(2):123–143
- 22.
Taves DR (1968) Separation of fluoride by rapid diffusion using hexamethyldisiloxane. Talanta 15:969–974
- 23.
Bawden JW, Deaton TG, Koch GG, Crawford BP (1989) Effect of an acute maternal fluoride dose on fetal plasma fluoride levels and enamel fluoride uptake in guinea pigs. J Dent Res 68(7):1169–1172
- 24.
Gomez S, Boyde A (1994) Correlated alkaline phosphatase histochemistry and quantitative backscattered electron imaging in the study of rat incisor ameloblasts and enamel mineralization. Microsc Res Tech 29(1):29–36. https://doi.org/10.1002/jemt.1070290105
- 25.
Symons NB (1955) Alkaline phosphatase activity in the developing teeth of the rat. J Anat 89(2):238–245
- 26.
Burstone S (1962) Enzyme histochemistry, and its application in the study of neoplasms. Academic Press
- 27.
Chen S, Rani S, Wu Y, Unterbrink A, Gu TT, Gluhak-Heinrich J, Chuang H-H, MacDougall M (2005) Differential regulation of dentin sialophosphoprotein expression by Runx2 during odontoblast cytodifferentiation. J Biol Chem 280(33):29717–29727. https://doi.org/10.1074/jbc.M502929200
- 28.
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2???CT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262
- 29.
Zhang Y, Kim JY, Horst O, Nakano Y, Zhu L, Radlanski RJ, Ho S, Den Besten PK (2014) Fluorosed mouse ameloblasts have increased SATB1 retention and Galphaq activity. PLoS One 9(8):e103994. https://doi.org/10.1371/journal.pone.0103994
- 30.
Guy WS, Taves DR, Brey WS (1976) Organic Fluorocompounds in human plasma: prevalence and characterization. In: Biochemistry involving carbon-fluorine bonds, vol 28. ACS Symposium Series, vol 28. AMERICAN CHEMICAL SOCIETY, pp 117-134. https://doi.org/10.1021/bk-1976-0028.ch007
- 31.
Ahmad M, Iseki H, Abduweli D, Baba O, Tabata MJ, Takano Y (2011) Ultrastructural and histochemical evaluation of appositional mineralization of circumpulpal dentin at the crown- and root-analog portions of rat incisors. J Electron Microsc 60(1):79–87. https://doi.org/10.1093/jmicro/dfq075
- 32.
Goldberg M, Septier D (1996) A comparative study of the transition between predentin and dentin, using various preparative procedures in the rat. Eur J Oral Sci 104(3):269–277
- 33.
Suzuki M, Shin M, Simmer JP, Bartlett JD (2014) Fluoride affects enamel protein content via TGF-beta1-mediated KLK4 inhibition. J Dent Res 93(10):1022–1027. https://doi.org/10.1177/0022034514545629
- 34.
Braut A, Kollar EJ, Mina M (2003) Analysis of the odontogenic and osteogenic potentials of dental pulp in vivo using a Col1a1-2.3-GFP transgene. Int J Dev Biol 47(4):281–292
- 35.
Yamakoshi Y, Hu JC-C, Fukae M, Zhang H, Simmer JP (2005) Dentin glycoprotein: the protein in the middle of the dentin sialophosphoprotein chimera. J Biol Chem 280(17):17472–17479. https://doi.org/10.1074/jbc.M413220200
- 36.
Sreenath T, Thyagarajan T, Hall B, Longenecker G, D’Souza R, Hong S, Wright JT, MacDougall M, Sauk J, Kulkarni AB (2003) Dentin sialophosphoprotein knockout mouse teeth display widened predentin zone and develop defective dentin mineralization similar to human dentinogenesis imperfecta type III. J Biol Chem 278(27):24874–24880. https://doi.org/10.1074/jbc.M303908200
- 37.
Suzuki S, Sreenath T, Haruyama N, Honeycutt C, Terse A, Cho A, Kohler T, Muller R, Goldberg M, Kulkarni AB (2009) Dentin sialoprotein and dentin phosphoprotein have distinct roles in dentin mineralization. Matrix Biol 28(4):221–229. https://doi.org/10.1016/j.matbio.2009.03.006
- 38.
Oh H-J, Lee H-K, Park S-J, Cho Y-S, Bae H-S, Cho M-I, Park J-C (2012) Zinc balance is critical for NFI-C mediated regulation of odontoblast differentiation. J Cell Biochem 113(3):877–887. https://doi.org/10.1002/jcb.23421
- 39.
Narayanan K, Gajjeraman S, Ramachandran A, Hao J, George A (2006) Dentin matrix protein 1 regulates dentin sialophosphoprotein gene transcription during early odontoblast differentiation. J Biol Chem 281(28):19064–19071. https://doi.org/10.1074/jbc.M600714200
- 40.
Yang G, Yuan G, MacDougall M, Zhi C, Chen S (2017) BMP-2 induced Dspp transcription is mediated by Dlx3/Osx signaling pathway in odontoblasts. Sci Rep 7(1):10775. https://doi.org/10.1038/s41598-017-10908-8
- 41.
Chen S, Gluhak-Heinrich J, Wang YH, Wu YM, Chuang HH, Chen L, Yuan GH, Dong J, Gay I, MacDougall M (2009) Runx2, Osx, and Dspp in tooth development. J Dent Res 88(10):904–909. https://doi.org/10.1177/0022034509342873
- 42.
Lee D-S, Choung H-W, Kim H-J, Gronostajski RM, Yang Y-I, Ryoo H-M, Lee ZH, Kim H-H, Cho E-S, Park J-C (2014) NFI-C regulates osteoblast differentiation via control of osterix expression. Stem Cells 32(9):2467–2479. https://doi.org/10.1002/stem.1733
- 43.
Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PVN, Komm BS, Javed A, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2005) Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem 280(39):33132–33140. https://doi.org/10.1074/jbc.M500608200
- 44.
Yamashiro T, Zheng L, Shitaku Y, Saito M, Tsubakimoto T, Takada K, Takano-Yamamoto T, Thesleff I (2007) Wnt10a regulates dentin sialophosphoprotein mRNA expression and possibly links odontoblast differentiation and tooth morphogenesis. Differentiation 75(5):452–462. https://doi.org/10.1111/j.1432-0436.2006.00150.x
- 45.
Sagomonyants K, Mina M (2014) Biphasic effects of FGF2 on odontoblast differentiation involve changes in the BMP and Wnt signaling pathways. Connect Tissue Res 55(sup1):53–56. https://doi.org/10.3109/03008207.2014.923867
- 46.
Cawthorn WP, Bree AJ, Yao Y, Du B, Hemati N, Martinez-Santibanez G, MacDougald OA (2012) Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a beta-catenin-dependent mechanism. Bone 50(2):477–489. https://doi.org/10.1016/j.bone.2011.08.010
- 47.
Qurrat Ul A, Seemab U, Nawaz S, Rashid S (2011) Integrative analyses of conserved WNT clusters and their co-operative behaviour in human breast cancer. Bioinformation 7(7):339–346
- 48.
Katoh M, Katoh M (2007) AP1- and NF-kappaB-binding sites conserved among mammalian WNT10B orthologs elucidate the TNFalpha-WNT10B signaling loop implicated in carcinogenesis and adipogenesis. Int J Mol Med 19(4):699–703
- 49.
Li J, Peet GW, Balzarano D, Li X, Massa P, Barton RW, Marcu KB (2001) Novel NEMO/IkappaB kinase and NF-kappa B target genes at the pre-B to immature B cell transition. J Biol Chem 276(21):18579–18590. https://doi.org/10.1074/jbc.M100846200
- 50.
Everett ET, McHenry MA, Reynolds N, Eggertsson H, Sullivan J, Kantmann C, Martinez-Mier EA, Warrick JM, Stookey GK (2002) Dental fluorosis: variability among different inbred mouse strains. J Dent Res 81(11):794–798
- 51.
Yan D, Gurumurthy A, Wright M, Pfeiler TW, Loboa EG, Everett ET (2007) Genetic background influences fluoride’s effects on osteoclastogenesis. Bone 41(6):1036–1044. https://doi.org/10.1016/j.bone.2007.07.018
- 52.
Mousny M, Banse X, Wise L, Everett ET, Hancock R, Vieth R, Devogelaer JP, Grynpas MD (2006) The genetic influence on bone susceptibility to fluoride. Bone 39(6):1283–1289. https://doi.org/10.1016/j.bone.2006.06.006
- 53.
Beertsen W, Niehof A (1986) Root-analogue versus crown-analogue dentin: a radioautographic and ultrastructural investigation of the mouse incisor. Anat Rec 215(2):106–118. https://doi.org/10.1002/ar.1092150204
- 54.
Boskey AL, Maresca M, Doty S, Sabsay B, Veis A (1990) Concentration-dependent effects of dentin phosphophoryn in the regulation of in vitro hydroxyapatite formation and growth. Bone Miner 11(1):55–65. https://doi.org/10.1016/0169-6009(90)90015-8
- 55.
Milan AM, Waddington RJ, Embery G (2001) Fluoride alters casein kinase II and alkaline phosphatase activity in vitro with potential implications for dentine mineralization. Arch Oral Biol 46(4):343–351
- 56.
Dimuzio MT, Veis A (1978) Phosphophoryns-major noncollagenous proteins of rat incisor dentin. Calcif Tissue Res 25(2):169–178
- 57.
Butler WT (1985) The chemistry and biology of mineralized tissues: proceedings of the Second International Conference on the Chemistry and Biology of Mineralized Tissues, held in Gulf Shores, Alabama, September 9-14, 1984. vol 436 p. s.n.], [S.l
- 58.
Yamakoshi Y, Hu JC, Fukae M, Iwata T, Kim JW, Zhang H, Simmer JP (2005) Porcine dentin sialoprotein is a proteoglycan with glycosaminoglycan chains containing chondroitin 6-sulfate. J Biol Chem 280(2):1552–1560. https://doi.org/10.1074/jbc.M409606200
- 59.
MacDougall M, Simmons D, Luan X, Nydegger J, Feng J, Gu TT (1997) Dentin Phosphoprotein and dentin sialoprotein are cleavage products expressed from a single transcript coded by a gene on human chromosome 4: dentin phosphoprotein dna sequence determination. J Biol Chem 272(2):835–842. https://doi.org/10.1074/jbc.272.2.835
- 60.
Sun Y, Lu Y, Chen S, Prasad M, Wang X, Zhu Q, Zhang J, Ball H, Feng J, Butler WT, Qin C (2010) Key proteolytic cleavage site and full-length form of DSPP. J Dent Res 89(5):498–503. https://doi.org/10.1177/0022034510363109
- 61.
Tsuchiya S, Simmer JP, Hu JCC, Richardson AS, Yamakoshi F, Yamakoshi Y (2011) Astacin proteases cleave dentin sialophosphoprotein (Dspp) to generate dentin phosphoprotein (Dpp). J Bone Miner Res 26(1):220–228. https://doi.org/10.1002/jbmr.202
- 62.
Zhang Y, Song Y, Ravindran S, Gao Q, Huang CC, Ramachandran A, Kulkarni A, George A (2014) DSPP contains an IRES element responsible for the translation of dentin phosphophoryn. J Dent Res 93(2):155–161. https://doi.org/10.1177/0022034513516631
- 63.
Lim WH, Liu B, Cheng D, Hunter DJ, Zhong Z, Ramos DM, Williams BO, Sharpe PT, Bardet C, Mah SJ, Helms JA (2014) Wnt signaling regulates pulp volume and dentin thickness. J Bone Miner Res 29(4):892–901. https://doi.org/10.1002/jbmr.2088
- 64.
Chen LF, Williams SA, Mu Y, Nakano H, Duerr JM, Buckbinder L, Greene WC (2005) NF-kappaB RelA phosphorylation regulates RelA acetylation. Mol Cell Biol 25(18):7966–7975. https://doi.org/10.1128/MCB.25.18.7966-7975.2005
- 65.
Arab-Nozari M, Mohammadi E, Shokrzadeh M, Ahangar N, Amiri FT, Shaki F (2020) Co-exposure to non-toxic levels of cadmium and fluoride induces hepatotoxicity in rats via triggering mitochondrial oxidative damage, apoptosis, and NF-kB pathways. Environ Sci Pollut Res Int 27(19):24048–24058. https://doi.org/10.1007/s11356-020-08791-4
- 66.
Refsnes M, Skuland T, Lag M, Schwarze PE, Ovrevik J (2014) Differential NF-kappaB and MAPK activation underlies fluoride- and TPA-mediated CXCL8 (IL-8) induction in lung epithelial cells. J Inflamm Res 7:169–185. https://doi.org/10.2147/JIR.S69646
- 67.
Baskiewicz-Masiuk M, Rybicka M, Gutowska I, Bober J, Grymula K, Dziedziejko V (2004) Sodium fluoride enhancement of monocyte differentiation via nuclear factor Kappa B mechanism. In
- 68.
Zhang M, Wang A, Xia T, He P (2008) Effects of fluoride on DNA damage, S-phase cell-cycle arrest and the expression of NF-kappaB in primary cultured rat hippocampal neurons. Toxicol Lett 179(1):1–5. https://doi.org/10.1016/j.toxlet.2008.03.002
- 69.
Rani CSS, MacDougall M (2000) Dental cells express factors that regulate bone resorption. Mol Cell Biol Res Commun 3(3):145–152. https://doi.org/10.1006/mcbr.2000.0205
- 70.
Kobayashi CAN, Leite AL, Peres-Buzalaf C, Carvalho JG, Whitford GM, Everett ET, Siqueira WL, Buzalaf MAR (2014) Bone response to fluoride exposure is influenced by genetics. PLoS One 9(12):e114343. https://doi.org/10.1371/journal.pone.0114343
- 71.
Cheng PT, Bader SM, Grynpas MD (1995) Biphasic sodium fluoride effects on bone and bone mineral: a review. Cells Mater 5(3):271–282
- 72.
Smalley JW, Embery G (1980) The influence of fluoride administration on the structure of proteoglycans in the developing rat incisor. Biochem J 190(2):263–272. https://doi.org/10.1042/bj1900263
- 73.
Waddington RJ, Embery G, Hall RC (1993) The influence of fluoride on proteoglycan structure using a rat odontoblast in vitro system. Calcif Tissue Int 52(5):392–398. https://doi.org/10.1007/BF00310205
- 74.
Waddington RJ, Moseley R, Smith AJ, Sloan AJ, Embery G (2004) Fluoride-induced changes to proteoglycan structure synthesised within the dentine–pulp complex in vitro. Biochim Biophys Acta (BBA) – Mol Basis Dis 1689(2):142–151. https://doi.org/10.1016/j.bbadis.2004.03.003
- 75.
Susheela AK, Sharma K (1988) Fluoride-induced changes in the tooth glycosaminoglycans: an in vivo study in the rabbit. Arch Toxicol 62(4):328–330. https://doi.org/10.1007/BF00332496
- 76.
Hall RC, Embery G, Waddington RJ (1996) Modification of the proteoglycans of rat incisor dentin-predentin during in vivo fluorosis. Eur J Oral Sci 104(3):285–291. https://doi.org/10.1111/j.1600-0722.1996.tb00079.x
- 77.
Goldberg M, Takagi M (1993) Dentine proteoglycans: composition, ultrastructure and functions. Histochem J 25(11):781–806. https://doi.org/10.1007/BF02388111
- 78.
Embery G, Hall R, Waddington R, Septier D, Goldberg M (2001) Proteoglycans in dentinogenesis. Crit Rev Oral Biol Med 12(4):331–349. https://doi.org/10.1177/10454411010120040401
- 79.
de Mattos Pimenta Vidal C, Leme-Kraus AA, Rahman M, Farina AP, Bedran-Russo AK (2017) Role of proteoglycans on the biochemical and biomechanical properties of dentin organic matrix. Arch Oral Biol 82:203–208. https://doi.org/10.1016/j.archoralbio.2017.06.020
Funding
This study was supported by funding from the Division of Pediatric Dentistry, Department of Orofacial Sciences, and the UCSF Center for Children’s Oral Health Research.