References Abbas et al., 2017. M. Abbas, M.H. Siddiqi, K. Khan, K. Zahra, A.U. NaqviHaematological evaluation of sodium fluoride toxicity in oryctolagus cunniculus. Toxicol. Rep., 4 (2017), pp. 450-454. Article. Adedara et al., 2017. I.A. Adedara, T.J.D. Ojuade, B.F. Olabiyi, U.F. Idris, E.M. Onibiyo, O.F. Ajeigbe, E.O. Farombi. Taurine ameliorates oxidative damage and thyroid dysfunction in rats chronically exposed to fluoride. Biol. Trace Elem. Res., 175 (2) (2017), pp. 388-3

Abstract

Highlights

  • NaF enhances generation of ROS and RNS in human RBC.
  • It oxidizes hemoglobin to give methemoglobin and oxyferryl hemoglobin.
  • NaF impairs the antioxidant power of cells.
  • It inhibits the pathways of glucose metabolism.
  • NaF inhibits transmembrane electron transport system.

Fluoride is a widespread environmental pollutant that at high levels exerts numerous deleterious effects on human health. The toxic effects of fluoride are a matter of serious concern since many countries have regions of endemic fluorosis. The main source of fluoride exposure for humans is intake of contaminated groundwater. Fluoride is absorbed from the gastrointestinal tract and enters the circulating blood, where the abundant red blood cells (RBC) are an early and major target of fluoride toxicity. Chronic fluoride exposure generates free radicals, reactive species which leads to redox imbalance, cytotoxicity and hematological damage. This study aimed to determine the effect of sodium fluoride (NaF) on human RBC under in vitro conditions. Isolated RBC were incubated with different concentrations of NaF (10–500 µM) for 8 h at 37 °C. Several biochemical parameters were determined in hemolysates or whole cells. Treatment of RBC with NaF enhanced the generation of reactive oxygen and nitrogen species. This increased the oxidation of hemoglobin to yield methemoglobin and oxoferrylhemoglobin, which are inactive in oxygen transport. NaF treatment increased the degradation of heme causing release of free iron from its porphyrin ring. Cellular antioxidant power was significantly decreased in NaF-treated RBC, lowering the metal reducing and free radical quenching ability of cells. The two pathways of glucose metabolism in RBC i.e. glycolysis and hexose monophosphate shunt, were inhibited. NaF also inhibited the plasma membrane redox system, and its associated ascorbate free radical reductase, to disrupt transmembrane electron transport. These results suggest that fluoride generates reactive species that cause extensive oxidative modifications in human RBC.

References

Agalakova and Gusev, 2011. N. Agalakova, G.P. Gusev. Fluoride-induced death of rat erythrocytes in vitro. Toxicol. Vitr., 25 (8) (2011), pp. 1609-1618. Article

Agalakova and Gusev, 2012. N. Agalakova, G.P. Gusev. Fluoride induces oxidative stress and ATP depletion in the rat erythrocytes in vitro. Environ. Toxicol. Pharmacol., 34 (2012), pp. 334-337. Article

Arai et al., 2014. M. Arai, N. Kikuchi, M. Itokawat, N. Rabbani, P.J. Thornalley. Measurement of glyoxalase activities. Biochem. Soc. Trans., 42 (2014), pp. 491-494. View Record in ScopusGoogle Scholar

Avron and Shavit, 1963. M. Avron, N. Shavit. A sensitive and simple method for determination of ferrocyanide. Anal. Biochem., 6 (1963), pp. 549-554. Article

Ayoob and Gupta, 2006. S. Ayoob, A.K. Gupta. Fluoride in drinking water: a review on the status and stress effects. Crit. Rev. Environ. Sci. Tech., 36 (2006), pp. 433-487. CrossRefView Record in ScopusGoogle Scholar

Barbier et al., 2010. O. Barbier, L. Arreola-Mendoza, L.M.D. Razo. Molecular mechanisms of fluoride toxicity. Chem. Biol. Interact., 188 (2) (2010), pp. 319-333. Article

Benesch et al., 1973. R.E. Benesch, R. Bensch, S. Yung. Equations for the spectrophotometric analysis of hemoglobin mixtures. Anal. Biochem., 55 (1973), pp. 245-248. Article

Benzie and Strain, 1996. I.F.F. Benzie, J.J. Strain. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem., 239 (1996), pp. 70-76. Article

Cekic et al., 2012. S.D. Cekic, N. Kara, E. Tutem, R. Apak. Protein-incorporated serum total antioxidant capacity measurement by a modified CUPRAC (cupric reducing antioxidant capacity) method. Anal. Lett., 45 (2012), pp. 754-763. CrossRefView Record in ScopusGoogle Scholar

Chlubek, 2003. D. Chlubek. Fluoride and oxidative stress. Fluoride, 36 (4) (2003), pp. 217-228. View Record in ScopusGoogle Scholar

Comporti et al., 2002. M. Comporti, C. Signorini, G. Buonocore, L. Ciccoli. Iron release, oxidative stress and erythrocyte ageing. Free Radic. Biol. Med., 32 (7) (2002), pp. 568-576. Article

Dharmaratne, 2019. R.W. Dharmaratne. Exploring the role of excess fluoride in chronic kidney disease: a review. Hum. Exp. Toxicol., 38 (3) (2019), pp. 269-279. CrossRefView Record in ScopusGoogle Scholar

Drabkin and Austin, 1935. D.L. Drabkin, J.H. Austin. Spectrophotometric studies II. preparation from washed blood cells; nitric oxide and sulf-hemoglobin. J. Biol. Chem., 112 (1935), pp. 51-66. Google Scholar

Eren et al., 2005. E. Eren, M. Ozturk, E.F. Mumcu, D. Canatan. Fluoride and its hematological effects. Toxicol. Ind. Health, 21 (10) (2005), pp. 255-258. CrossRefView Record in ScopusGoogle Scholar

Farag and Alagawany, 2018. M.R. Farag, M. Alagawany. Erythrocytes as a biological model for screening of xenobiotic toxicity. Chem. Biol. Interact., 279 (2018), pp. 73-83. Article

Fina et al., 2014. B.L. Fina, M. Lombarte, J.P. Rigalli, A. Rigalli. Fluoride increases superoxide production and impairs the respiratory chain in ROS 17/2.8 osteoblastic cells. PLoS One, 9 (6) (2014), Article e100768. 10.1371/journal.pone.0100768

Fluegge, 2016. K. Fluegge. Community water fluoridation predicts increase in age-adjusted incidence and prevalence of diabetes in 22 states from 2005 and 2010. J. Water Health, 14 (5) (2016), pp. 864-877. CrossRefView Record in ScopusGoogle Scholar

FRRDF, 1999. FRRDF. State of art report on the extent of fluoride in drinking water and the resulting endemicity in India. Fluorosis Research and Rural Development Foundation, New Delhi (1999). Google Scholar

Gay and Gebicki, 2000. C.A. Gay, J.M. GebickiA critical evaluation of the effect of sorbitol on the ferric -xylenol orange hydroperoxide assay. Anal. Biochem., 284 (2) (2000), pp. 217-220. Article

Gutiérrez-Salinas et al., 2013. J. Gutiérrez-Salinas, L. García-Ortíz, J.A. Morales González, S. Hernández-Rodríguez, S. Ramírez-García, N.R. Núñez-Ramos, E. Madrigal-Santillán. In vitro effect of sodium fluoride on malondialdehyde concentration and on superoxide dismutase, catalase, and glutathione peroxidase in human erythrocytes. Sci. World J., 24 (2013), Article 864718, 10.1155/2013/864718

Heinz and Freimoller, 1982. F. Heinz, B. Freimoller. Glyceraldehyde-3-phosphate dehydrogenase from human tissues. Methods Enzym., 89 (1982), pp. 301-302. View Record in ScopusGoogle Scholar

Huang et al., 2007. J.C. Huang, D.J. Li, J.C. Diao, J. Hou, J.L. Yuan, G.L. ZouA novel fluorescent method for determination of peroxynitrite using folic acid as a probe. Talanta, 72 (4) (2007), pp. 1283-1287. Article

Johnston and Strobel, 2020. N.R. Johnston, S.A. Strobel. Principles of fluoride toxicity and cellular response: a review. Arch. Toxicol., 94 (2020), pp. 1051-1069. View Record in ScopusGoogle Scholar

Jothiramajayam et al., 2014. M. Jothiramajayam, S. Sinha, M. Ghosh, A. Nag, A. Jana, A. Mukherjee. Sodium fluoride promotes apoptosis by generation of reactive oxygen species in human lymphocytes. J. Toxicol. Environ. Health Part A, 77 (2014), pp. 1269-1280. CrossRefView Record in ScopusGoogle Scholar

Kahl et al., 1973. S. Kahl, K. Wocik, Z. Ewy. Effect of fluoride on some hematological indices and 59Fe distribution in the blood and iron-storing tissues in rats. Bull. Acad. Pol. Sci. Biol., 21 (5) (1973), pp. 389-393. PMID: 4722074. View Record in ScopusGoogle Scholar

Kanduti et al., 2016. D. Kanduti, P. Sterbenk, B. Artnik. Fluoride: a review of use and effects on human health. Mater. Sociomed., 28 (2) (2016), pp. 133-137. CrossRefView Record in ScopusGoogle Scholar

Kassa et al., 2016. T. Kassa, S. Jana, F. Meng, A.I. Alayash. Differential heme release from various hemoglobin redox states and the upregulation of cellular heme oxygenase-1. FEBS Open Bio, 6 (9) (2016), pp. 876-884. CrossRefView Record in ScopusGoogle Scholar

Keller et al., 2004. A. Keller, A. Mohamed, S. Drose, U. Brandt, I. Fleming, R.P. Brandes. Analysis of dichlorodihydrofluorescein and dihydrocalcein as probes for the detection of intracellular reactive oxygen species. Free Radic. Res., 38 (12) (2004), pp. 1257-1267. CrossRefView Record in ScopusGoogle Scholar

Kharb et al., 2012. S. Kharb, R. Sandhu, Z.S. Kundu Fluoride levels and osteosarcoma. South Asian J. Cancer, 1 (2) (2012), pp. 76-77. CrossRefView Record in ScopusGoogle Scholar

Kuma et al., 1972. F. Kuma, S. Ishizawa, K. Hirayama, H. Nakajima. Studies on methemoglobin reductase. I. comparative studies of diaphorases from normal and methemoglobinemic erythrocytes. J. Biol. Chem., 247 (1972), pp. 550-555. Article

Kumar et al., 2017. S. Kumar, S. Lata, J. Yadav, J.P. Yadav. Relationship between water, urine and serum fluoride and fluorosis in school children of Jhajjar District, Haryana, India. Appl. Water Sci., 7 (2017), pp. 3377-3384. CrossRefView Record in ScopusGoogle Scholar

Kumari and Kumar, 2011. S. Kumari, A. Kumar. Fluoride toxicity enhances phagocytic activity of macrophages in spleen of rats. Asian J. Exp. Biol. Sci., 2 (2) (2011), pp. 283-287. View Record in ScopusGoogle Scholar

Machalinski et al., 2000. B. Machalinski, M. Zejmo, I. Stecewicz, A. Machalinska, Z. Machoy, M.Z. Ratajczak. The influence of sodium fluoride on the clonogenicity of human hematopoietic progenitor cell: a preliminary report. Fluoride, 33 (4) (2000), pp. 168-173. View Record in ScopusGoogle Scholar

Marinho et al., 2016. V.C. Marinho, L.Y. Chong, H.V. Worthington, T. WalshFluoride mouthrinses for preventing dental caries in children and adolescents. Cochrane Database Syst. Rev., 7 (7) (2016), Article CD002284, 10.1002/14651858.CD002284.pub2

May et al., 2004. J.M. May, Z.C. Qu, C.E. Cobb. Human erythrocyte recycling of ascorbic acid: relative contributions from the ascorbate free radical and dehydroascorbic acid. J. Biol. Chem., 279 (2004), pp. 14975-14982. Article

Miranda et al., 2018. G.H.N. Miranda, B.A.Q. Gomes, L.O. Bittencourt, W.A.B. Aragão, L.S. Nogueira, A.S. Dionizio, M.A.R. Buzalaf, M.C. Monteiro, R.R. Lima. Chronic exposure to sodium fluoride triggers oxidative biochemistry misbalance in mice: effects on peripheral blood circulation. Oxid. Med. Cell. Longev., 2018 (2018), Article 8379123, 10.1155/2018/8379123

Mishra et al., 2012. K. Mishra, H. Ojha, N.K. Chaudhury. Estimation of antiradical properties of antioxidants using DPPH assay: a critical review and results. Food Chem., 130 (2012), pp. 1036-1043. Article

Mohrenweiser and Novotny, 1982. H.W. Mohrenweiser, J.E. Novotny. ACP1GUA-1-a low-activity variant of human erythrocyte acid phosphatase: association with increased glutathione reductase activity. Am. J. Hum. Genet., 34 (1982), pp. 425-433. View Record in ScopusGoogle Scholar

Nagababu and Rifkind, 1998. E. Nagababu, J.M. Rifkind. Formation of fluorescent heme degradation products during the oxidation of hemoglobin by hydrogen peroxide. Biochem. Biophys. Res. Commun., 247 (3) (1998), pp. 592-596. Article

Nagababu et al., 2008. E. Nagababu, M.E. Fabry, R.L. Nagel, J.M. Rifkind. Heme degradation and oxidative stress in murine models for hemoglobinopathies: thalassemia, sickle cell disease and hemoglobin C disease. Blood Cells Mol. Dis., 41 (2008), pp. 60-66. Article

Ni et al., 2018. J. Ni, Y. Li, W. Zhang, R. Shu, Z. Zhong. Sodium fluoride causes oxidative stress and apoptosis in cementoblasts. Chem. Biol. Interact., 294 (2018), pp. 34-39. Article

Oyagbemi et al., 2018. A.A. Oyagbemi, T.O. Omobowale, O.E. Ola-Davies, E.R. Asenuga, T.O. Ajibade, O.A. Adejumobi, O.A. Arojojoye, J.M. Afolabi, B.S. Ogunpolu, O.O. Falayi, F.O. Hassan, G.O. Ochigbo, A.B. Saba, A.A. Adedapo, M.A. Yakubu. Quercetin attenuates hypertension induced by sodium fluoride via reduction in oxidative stress and modulation of HSP 70/ERK/PPAR? signaling pathways. Biofactors, 44 (5) (2018), pp. 465-479. CrossRefView Record in ScopusGoogle Scholar

Panter, 1994. S.S. Panter. Release of iron from hemoglobin. Methods Enzym., 231 (1994), pp. 502-514. Google Scholar

Prieto et al., 1999. P. Prieto, M. Pinda, M. Aguilar. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal. Biochem., 269 (1999), pp. 337-347. View Record in ScopusGoogle Scholar

Qasim and Mahmood, 2015. N. Qasim, R. Mahmood. Diminution of oxidative damage to human erythrocytes and lymphocytes by creatine: possible role of creatine in blood. PLOS ONE, 10 (11) (2015), Article e0141975, 10.1371/journal.pone.0141975

Radi, 2018. R. Radi. Oxygen radicals, nitric oxide and peroxynitrite: redox pathways in molecular medicine. Proc. Natl. Acad. Sci., 115 (23) (2018), pp. 5839-5848. CrossRefView Record in ScopusGoogle Scholar

Rafique et al., 2015. T. Rafique, I. Ahmed, F. Soomro, M.H. Khan, K. Shirin. Fluoride levels in urine, blood plasma and serum of people living in an endemic fluorosis area in the Thar desert, Pakistan. J. Chem. Soc. Pak., 37 (06) (2015), pp. 1223-1230. Google Scholar

Re et al., 1999. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 26 (1999), pp. 1231-1237. Article

Ribeiro et al., 2017. D.A. Ribeiro, V.Q. Yujra, V.H.P. da Silva, S.R. Claudio, D. Estadella, M. de Barros Viana, C.T.F. Oshima. Putative mechanisms of genotoxicity induced by fluoride: a comprehensive review. Environ. Sci. Pollut. Res., 24 (2017), pp. 15254-15259. CrossRefView Record in ScopusGoogle Scholar

Rizvi and Srivastava, 2010. S.I. Rizvi, N. Srivastava. Erythrocyte plasma membrane redox system in first degree relatives of type 2 diabetic patients. Int. J. Diabetes Mellit., 2 (2010), pp. 119-121. Article

Shashi and Meenakshi, 2015. A. Shashi, G. Meenakshi. Inhibitory effect of fluoride on Na+,K+ ATPase activity in human erythrocyte membrane. Biol. Trace Elem. Res., 168 (2) (2015), pp. 340-348. Google Scholar

Shonk and Boxer, 1964. C.C. Shonk, G.E. Boxer. Enzyme patterns in human tissues I. Methods for the determination of glycolytic enzymes. Cancer Res., 24 (1964), pp. 709-721. View Record in ScopusGoogle Scholar

Srivastava and Flora, 2020. S. Srivastava, S.J.S. Flora. Fluoride in drinking water and skeletal fluorosis: a review of the global impact. Curr. Environ. Health Rep., 7 (2) (2020), pp. 140-146. CrossRefView Record in ScopusGoogle Scholar

Susheela, 2001. A.K. Susheela. Fluorosis research and rural development foundation: fluorosis Indian scienario: A Treatise. Fluor., 34 (3) (2001), pp. 181-183.  View Record in ScopusGoogle Scholar

Susheela et al., 2018. A.K. Susheela, N.K. Mondal, R. Gupta, M. Sethi, R.M. Panday. Fluorosis is linked to anemia. Curr. Sci., 115 (4) (2018), pp. 692-700. CrossRefView Record in ScopusGoogle Scholar

Susheela and Toteja, 2018. A.K. Susheela, G.S. Toteja. Prevention & control of fluorosis and linked disorders: developments in the 21st century. Indian J. Med. Res., 148 (5) (2018), pp. 539-547. CrossRefView Record in ScopusGoogle Scholar

Tavazzi et al., 2002. B. Tavazzi, A.M. Amorini, G. Fazzina, D. Di Pierro, M. Tuttobene, B. Giardina, G. Lazzarino. Oxidative stress induces impairment of human erythrocyte energy metabolism through the oxygen radical-mediated direct activation of AMP-deaminase. J. Biol. Chem., 276 (51) (2002), pp. 48083-48092. Google Scholar

WHO, 2006. WHO. Fluoride in Drinking Water. J. Fawell, K. Bailey, J. Chilton, E. Dahi, Y. Magara (Eds.), World Health Organization, IWA Publishing (2006). Google Scholar

Waugh, 2019. D.T. Waugh. Fluoride exposure induces inhibition of sodium-and potassium-activated adenosine triphosphatase (Na+K+-ATPase) enzyme activity: molecular mechanisms and implications for public health. Int. J. Environ. Res. Public Health, 16 (8) (2019), p. 1427, 10.3390/ijerph16081427

Whitford, 1996. G.M. Whitford. The metabolism and toxicity of fluoride. Monogr. Oral. Sci., 2 (1996), pp. 1-153. View Record in ScopusGoogle Scholar

Wojtala et al., 2014. A. Wojtala, M. Bonora, D. Malinska, P. Pinton, J. Duszynski, M.R. Wieckowski. Methods to monitor ROS production by fluorescence microscopy and fluorometry. Methods Enzym., 542 (2014), pp. 243-262. Article

Yadav et al., 2019. K.K. Yadav, S. Kumar, Q.B. Pham, N. Gupta, S. Rezania, H. Kamyab, S. Yadav, J. Vymazal, V. Kumar, D.Q. Tri, A. Talaiekhozani, S. Prasad, L.M. Reece, N. Singh, P.K. Maurya, J. Cho. Fluoride contamination, health problems and remediation methods in Asian groundwater: a comprehensive review. Ecotoxicol. Environ. Saf., 30 (182) (2019), Article 109362, 10.1016/j.ecoenv.2019.06.045. Article

Zuo et al., 2018. H. Zuo, L. Chen, M. Kong, L. Qiu, P. Lü, P. Wu, Y. Yang, K. Chen. Toxic effects of fluoride on organisms. Life Sci., 198 (2018), pp. 18-24. Article