Abstract

Highlights

  • 96 animal-based food samples were analyzed by potentiometry using a fluoride selective electrode.
  • Seafood samples recorded the highest fluoride concentrations.
  • Fluoride intake from these foods is below 20% of UL (upper level) for adults.
  • Fluoride intake from animal-based food may be important in regions with high fluoride content in water supplies.

Fluoride is an anion that is widely distributed in nature and can be found in varying levels in water supplies and foodstuffs. This study has been carried out considering the toxic effects in cases of chronic and high fluoride intake and the presence of this anion in foods of animal origin. The fluoride content in a total of 96 samples of animal origin (meat, poultry and poultry products; fish and seafood; milk, dairy products and eggs) was determined by potentiometry with a fluoride selective electrode (ISE). The overall mean concentration was 3.92 ± 6.04 mg/kg, with a minimum for milk (values below the detection limit of 0.01 mg/kg) and a maximum for shrimps (32.1 mg/kg). Seafood was found to have the highest fluoride concentrations and the estimated daily intake (EDI) and the percentage contribution to the adequate intake (AI) and upper-level intake (UL) were calculated. Overall, the percentage contribution to UL was less than 20%. It was concluded that the intake of the analysed animal-based foods does not pose a toxic risk.

    Study online at https://www.sciencedirect.com/science/article/pii/S0889157524004290

    Excerpts:

    Considering the adequate intake (AI) values, the highest contribution percentages are obtained for dairy products, with percentages ranging from 25% to 27.9% for men and 29.3–32.8% for women (Table 5). This contribution is considered significant and adequate. However, it should be noted that the bioavailability of the fluoride ion contained in dairy products is impaired, as the presence of calcium ion reduces its presence due to the formation of insoluble calcium fluoride compounds.

    Table 5. EDI values and contribution percentage to the UL by food type.

    Food type EDI
    (mg/day)
    Contribution (%) to UL
    18–34 yrs 35–54 yrs 55–75 yrs 18–34 yrs 35–54 yrs 55–75 yrs
    Dairy products 0.95 0.94 0.85 13.6 13.4 12.1
    Fish 0.32 0.36 0.34 4.6 5.1 4.9
    Red meat 0.12 0.12 0.08 1.7 1.7 1.1
    Sausages 0.03 0.02 0.01 0.4 0.3 0.1
    Poultry 0.18 0.18 0.14 2.6 2.6 2.0
    Eggs 0.01 0.01 0.01 0.1 0.1 0.1

    The second food that has the highest contribution percentages is fish, with percentages ranging from 9.4 % to 10 % in men and 11–12.4 % in women, assuming half the contribution of dairy products. This contribution is considered adequate and significant.

    The rest of the foods have low percentages, and their contribution is considered insufficient and insignificant. Within this group, eggs and sausages are the ones that make the least fluoride contributions to the diet with contribution ranges that go from 0.3 % for both sexes; and 0.3–0.9 % in men and 0.3–1 % in women, for these products respectively.

    Considering the results of this study for only these foods, if they were consumed together, dietary fluoride intakes would be adequate. This could have positive consequences for the health of the population, since these levels promote the formation of fluoropathite in the teeth, help fight bacterial plaque, slow down demineralization and act as a catalyst in the remineralization of enamel and increases bone hardness.

    Table 4 shows the intake values and percentage contribution to the UL established by EFSA (EFSA, 2006). The UL contribution values indicate a higher contribution from dairy consumption, with percentages of 12.1–13.6 % for adult men and women. However, this percentage contribution does not pose a health risk for adults.

    For the rest of the food group, the contribution percentages are very low, being the minimum 0.1 % (for eggs) and the maximum 5.1 % (for fish). Such a contribution to the diet, as with dairy products, does not pose a health risk to adults. However, the fluoride intake from other food groups and especially from drinking water and other beverages needs to be assessed.

    4. Conclusions

    The foods with the highest fluoride content are predominantly those of marine origin, with a remarkably high exposure to fluoride in nature. Shrimps, which have an exoskeleton, stand out within this group. In comparison, meats have somewhat lower and relatively uniform fluoride concentrations. Dairy products, on the other hand, generally show low concentrations of this anion. However, when analysing the percentages in relation to the reference values for adequate intake, it is observed that dairy products contribute the most to the total fluoride intake due to their higher consumption by the population. In terms of risk assessment of elevated fluoride exposure, the intake of the foods analysed does not represent a toxic risk.

    Although the current results do not indicate a health risk for adult consumers, it is crucial to consider that the total dietary intake of fluoride could be higher. It should also be noted that an in-depth study of each food group sampled is necessary to establish a more accurate risk assessment. This study establishes the basis as to which animal food group marketed in the Canary Islands region (Spain) has the highest fluoride concentrations.

    In addition, further studies including other food groups are required. Conducting a comprehensive analysis of total dietary intake of fluoride will allow a better understanding of the overall exposure and help to establish more precise recommendations for the population. In addition, it would be beneficial to investigate fluoride intakes in different demographic groups, including children, to ensure that all populations are adequately protected against….

    References

    Aguirre-Sierra et al., 2013

    A. Aguirre-Sierra, A. Alonso, J.A. Camargo
    Fluoride bioaccumulation and toxic effects on the survival and behavior of the endangered white-clawed crayfish Austropotamobius pallipes (Lereboullet)
    Arch. Environ. Contam. Toxicol., 65 (2013), pp. 244-250, 10.1007/s00244-013-9892-6

    View in ScopusGoogle Scholar

    • Al Warawreh et al., 2020
      Al Warawreh, A.M., Al Tamimi, Z.H., Al Qatawna, M.I., Al Momani, A.A., Al Mhaidat, M.R., El Naji, W.S. & Al Saraireh S. (2020). Prevalence of Dental Fluorosis among Southern Jordanian Population. International Journal of Dentistry, 29:8890004. 2020, 8890004. https://doi.org/10.1155/2020/8890004.
    • Arellano et al., 1998
      L.A. Arellano, A.T. Fleitas, M.E. Dávila
      Prevalencia de Fluorosis dental en áreas fluoruradas y no fluoruradas de la ciudad de Mérida, Venezuela
      Acta Odontol. ógica Venez., 36 (3) (1998)
      https://www.actaodontologica.com/ediciones/1998/3/art-9/

    Beltrán-Aguilar et al., 2010

    E.D. Beltrán-Aguilar, L. Barker, B.A. Dye
    Prevalence and severity of dental fluorosis in the United States, 1999-2004
    NCHS Data Brief., 53 (2010), pp. 1-8
    https://www.cdc.gov/nchs/data/databriefs/db53.pdf

    Google Scholar

    • Borges Álamo, 2008
      Borges Álamo, C. (2008). Análisis de la dieta de la población adulta de Canarias y su relación con los patrones dietéticos mediterráneo y occidental. Doctoral Dissertation, Universidad de La Laguna, Spain. https://www.educacion.gob.es/teseo/imprimirFicheroTesis.do?idFichero=C1ObKSK0tr4%3D.

    Buzalaf et al., 2006

    M.A. Buzalaf, J.P. Pessan, R. Fukushima, A. Dias, H.M. Rosa
    Fluoride content of UHT milks commercially available in Bauru, Brazil
    J. Appl. Oral. Sci.: Rev. FOB, 14 (1) (2006), pp. 38-42, 10.1590/s1678-77572006000100008

    View in ScopusGoogle ScholarCamargo, 2003

    J.A. Camargo
    Fluoride toxicity to aquatic organisms: a review
    Chemosphere, 50 (3) (2003), pp. 251-264, 10.1016/s0045-6535(02)00498-8

    View PDFView articleView in ScopusGoogle ScholarCantoral et al., 2019

    A. Cantoral, L.C. Luna-Villa, A.A. Mantilla-Rodriguez, A. Mercado, F. Lippert, Y. Liu, K.E. Peterson, H. Hu, M.M. Téllez-Rojo, E.A. Martinez-Mier
    Fluoride content in foods and beverages from Mexico City markets and supermarkets
    Food Nutr. Bull., 40 (4) (2019), pp. 514-531, 10.1177/0379572119858486

    View in ScopusGoogle ScholarCasagrande Marimon et al., 2007

    M.P. Casagrande Marimon, K. Knöller, A. Roisenberg
    Anomalous fluoride concentration in groundwater—is it natural or pollution? A stable isotope approach
    Isot. Environ. Health Stud., 43 (2) (2007), pp. 165-175, 10.1080/10256010701360132

    Chen et al., 2013

    J. Chen, J. Cao, J. Wang, R. Jia, W. Xue, Y. Li, Y. Luo, L. Xie
    Effects of fluoride on growth, body composition, and serum biochemical profile in a freshwater teleost, Cyprinus carpio
    Environ. Toxicol. Chem., 32 (10) (2013), pp. 2315-2321, 10.1002/etc.2305

    View in ScopusGoogle ScholarChowdhury et al., 2018

    C. Chowdhury, S. Khijmatgar, D.P. Kumari, A. Chowdhury, M. Grootveld, C. Hegde, E. Lynch
    Fluoride in fish flesh, fish bone and regular diet in south-coastal area of Karnataka state of India
    Indian J. Dent. Res.: Off. Publ. Indian Soc. Dent. Res., 29 (4) (2018), pp. 414-417, 10.4103/ijdr.IJDR_653_16

    View in ScopusGoogle Scholar

    Del Piero et al., 2012

    S. Del Piero, L. Masiero, S. Casellato
    Influence of temperature on fluoride toxicity and bioaccumulation in the nonindigenous freshwater mollusk Dreissena polymorpha Pallas, 1769
    Environ. Toxicol. Chem., 31 (11) (2012), pp. 2567-2571, 10.1002/etc.1979

    View in ScopusGoogle ScholarDo et al., 2020

    L.G. Do, D.H. Ha, K.F. Roberts-Thomson, A.J. Spencer
    Dental fluorosis in the Australian adult population
    Aust. Dent. J., 65 (Suppl 1) (2020), pp. S47-S51, 10.1111/adj.12764

    View in ScopusGoogle Scholar

    • EFSA, 2006
      EFSA (European Food Safety Authority (2006). Scientific Panel on Dietetic Products, Tolerable upper intake levels for vitamins and minerals. https://www.efsa.europa.eu/sites/default/files/efsa_rep/blobserver_assets/ndatolerableuil.pdf.
    • EFSA, 2024
      EFSA. (2024). Dietary Reference Values (DRV) for the EU population. Minerals. Fluoride. https://multimedia.efsa.europa.eu/drvs/index.htm.
    • EU (European Union, 2020
      EU (European Union). Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption. Official Journal of the European Union L 435, 23.12.2020, p. 1–62. http://data.europa.eu/eli/dir/2020/2184/oj.

    Firempong et al., 2013

    C. Firempong, K. Nsiah, D. Awunyo-Vitor, J. Dongsogo
    Soluble fluoride levels in drinking water-a major risk factor of dental fluorosis among children in Bongo community of Ghana
    Ghana Med. J., 47 (1) (2013), pp. 16-23
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3645181/pdf/GMJ4701-0016.pdf

    Google ScholarGanta et al., 2015

    S. Ganta, A. Yousuf, A. Nagaraj, S. Pareek, M. Sidiq, K. Singh, P. Vishnani
    Evaluation of fluoride retention due to most commonly consumed estuarine fishes among fish consuming population of Andhra Pradesh as a contributing factor to dental fluorosis: a cross-sectional study
    J. Clin. Diagn. Res.: JCDR, 9 (6) (2015), pp. ZC11-ZC15, 10.7860/JCDR/2015/12271.6035

    View in ScopusGoogle ScholarGonzález Sacramento, N., Rubio Armendáriz, C., Gutiérrez Fernández, A.J., Luis González, G., Hardisson de la Torre, A. & Revert Girones, C, 2015

    González Sacramento, N., Rubio Armendáriz, C., Gutiérrez Fernández, A.J., Luis González, G., Hardisson de la Torre, A. & Revert Girones, C
    El agua de consumo como fuente de exposición crónica a fluoruro en Tenerife; evaluación del riesgo
    Nutr. óN. Hosp., 31 (4) (2015), pp. 1787-1794, 10.3305/nh.2015.31.4.8564

    Indermitte et al., 2009

    E. Indermitte, A. Saava, E. Karro
    Exposure to high fluoride drinking water and risk of dental fluorosis in Estonia
    Int. J. Environ. Res. Public Health, 6 (2) (2009), pp. 710-721, 10.3390/ijerph6020710

    View in ScopusGoogle ScholarIUPAC, 1976

    IUPAC
    Recommendations for nomenclature of ION-selective electrodes
    Pure Appl. Chem., vol. 48 (1) (1976), pp. 127-132, 10.1351/pac197648010127

    Jáudenes et al., 2020

    J.R. Jáudenes, A.J. Gutiérrez, S. Paz, C. Rubio, A. Hardisson
    Fluoride risk assessment from consumption of diferent foods commercialized in a european region.
    Appl. Sci., 10 (2020), p. 6582, 10.3390/app10186582

    View in ScopusGoogle ScholarJohnston and Strobel, 2020

    N.R. Johnston, S.A. Strobel
    Principles of fluoride toxicity and the cellular response: a review
    Arch. Toxicol., 94 (4) (2020), pp. 1051-1069, 10.1007/s00204-020-02687-5

    View in ScopusGoogle ScholarKjellevold Malde et al., 2001

    M. Kjellevold Malde, K. Bjorvatn, K. Julshamn
    Determination of fluoride in food by the use of alkali fusion and fluoride ion-selective electrode
    Food Chem., 73 (3) (2001), pp. 373-379, 10.1016/S0308-8146(01)00118-2

    View PDFView articleView in ScopusGoogle ScholarLee et al., 2010

    H.B. Lee, G.S. Katz, A.F. Restori
    A Monte Carlo study of seven homogeneity of variance tests
    J. Math. Stat., 6 (3) (2010), pp. 359-366, 10.3844/jmssp.2010.359.366

    Li et al., 2020

    M. Li, X. Qu, H. Miao, et al.
    Spatial distribution of endemic fluorosis caused by drinking water in a high-fluorine area in Ningxia, China
    Environ. Sci. Pollut. Res, 27 (2020), pp. 20281-20291, 10.1007/s11356-020-08451-7

    View in ScopusGoogle ScholarLimón-Pacheco et al., 2018

    J.H. Limón-Pacheco, M.I. Jiménez-Córdova, M. Cárdenas-González, I.M. Sánchez Retana, M.E. Gonsebatt, L.M. Del Razo
    Potential Co-exposure to Arsenic and Fluoride and Biomonitoring Equivalents for Mexican Children
    Ann. Glob. Health, 84 (2) (2018), pp. 257-273, 10.29024/aogh.913

    View in ScopusGoogle ScholarLinhares et al., 2016

    D.P.S. Linhares, P.V. Garcia, L. Amaral, T. Ferreira, J.A. Cury, W. Vieira, A.D.S. Rodrigues
    Sensitivity of two biomarkers for biomonitoring exposure to fluoride in children and women: a study in a volcanic area
    Chemosphere, 155 (2016), pp. 614-620, 10.1016/j.chemosphere.2016.04.092

    View PDFView articleView in ScopusGoogle Scholar

    • Liteplo et al., 2002
      Liteplo, R., Gomes, M.R., Canada, H., Ottawa, C., Howe, M.P., & Malcolm, M.H. (2002). Environmental Health Criteria 227. Fluorides. World Health Organization. Geneva, Switzerland.

    Mahantesha et al., 2016

    T. Mahantesha, U.B. Dixit, R.P. Nayakar, D. Ashwin, N.K. Ramagoni, V.P. Kamavaram Ellore
    Prevalence of dental fluorosis and associated risk factors in Bagalkot District, Karnataka, India
    Int. J. Clin. Pediatr. Dent., 9 (3) (2016), pp. 256-263, 10.5005/jp-journals-10005-1373
    • Martín Delgado et al., 1991
      M.M. Martín Delgado, A. Hardisson de la Torre, R. Álvarez Marante
      Determinación Potenciométrica de fluoruros en bebidas alcohólicas y analcoholicas. Estudio comparativo de distintas disoluciones acondicionadoras.
      An. Real. Acad. Farm., 57 (1991), pp. 471-483

    Milhaud et al., 1981

    G. Milhaud, L. El Bahri, A. Dridi
    The effects of fluoride on fish in Gabes Gulf
    Fluoride, 14 (4) (1981), pp. 161-168

    Google ScholarMohammadi et al., 2017

    A.A. Mohammadi, M. Yousefi, M. Yaseri, et al.
    Skeletal fluorosis in relation to drinking water in rural areas of West Azerbaijan, Iran
    Sci. Rep., 7 (2017), Article 17300, 10.1038/s41598-017-17328-8

    View in ScopusGoogle ScholarMolina-Frechero et al., 2015

    Molina-Frechero, N., Gaona, E., Angulo, M., Sánchez Pérez, L., González González, R., Nevarez Rascón, M., & Bologna-Molina, R. (2015). Fluoride Exposure Effects and Dental Fluorosis in Children in Mexico City. Medical science monitor: international medical journal of experimental and clinical research, 21, 3664–3670. https://doi.org/10.12659/msm.895351
    .

    Mulualem et al., 2022

    D. Mulualem, D. Hailu, M. Tessema, S.J. Whiting
    Association of dietary calcium intake with dental, skeletal and non-skeletal fluorosis among women in the Ethiopian Rift Valley
    Int. J. Environ. Res. Public Health, 19 (4) (2022), p. 2119, 10.3390/ijerph19042119

    View in ScopusGoogle ScholarNilchian et al., 2018

    F. Nilchian, I. Asgary, F. Mastan
    The effect of dental fluorosis on the quality of life of female high school and precollege students of high fluoride-concentrated area
    J. Int. Soc. Prev. Community Dent., 8 (4) (2018), pp. 314-319, 10.4103/jispcd.JISPCD_94_18

    View in ScopusGoogle ScholarOcak and Köse, 2018

    E. Ocak,  Köse
    Determination of fluoride in water, milk, and dairy products
    Fluoride, 51 (2) (2018), pp. 182-192

    Google Scholar

    • Orrego Alzate, 2008
      Orrego Alzate, C.E.. (2008). Congelación y Liofilización De Alimentos. Repositorio Institucional UN, Universidad Nacional de Colombia, Colombia.

    Paz et al., 2017

    S. Paz, J.R. Jaudenes, A.J. Gutiérrez, C. Rubio, A. Hardisson, C. Revert
    Determination of fluoride in organic and non-organic wines
    Biol. Trace Elem. Res., 178 (1) (2017), pp. 153-159, 10.1007/s12011-016-0910-1

    View in ScopusGoogle Scholar

    • Pérez Olmos, 1985
      R. Pérez Olmos
      Elementos traza en alimentos: determinación del contenido de fluoruros en tés
      Aliment.: Rev. De. Tecnol. ía e Hig. De. los Aliment., 162 (1985), pp. 57-61

    Poureslami et al., 2008

    H.R. Poureslami, P. Khazaeli, G.R. Noori
    Fluoride in food and water consumed in Koohbanan (Kuh-e Banan)
    Iran. Flouride, 41 (3) (2008), pp. 216-219

    Google ScholarRanjan and Ranjan, 2015

    R. Ranjan, A. Ranjan
    Fluoride tolerance
    Fluoride Toxicity in Animals. Springer Briefs in Animal Sciences, Springer Briefs (2015), 10.1007/978-3-319-17512-6_5

    Razali and Wah, 2011

    N.M. Razali, Y.B. Wah
    Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling Tests
    J. Stat. Model. Anal., 2 (2011), pp. 21-33
    https://www.nrc.gov/docs/ML1714/ML17143A100.pdf

    Google ScholarRevelo-Mejía et al., 2023

    I.A. Revelo-Mejía, S. Alejandro-Vega, S. Paz-Montelongo, D. Niebla-Canelo, S. Cerdán-Pérez, C. Rubio-Armendáriz, Á.J. Gutiérrez-Fernández, A. Hardisson, R. Rodríguez-Díaz, C. Hernández-Sánchez
    Fluoride Levels in Supply Water from the Canary Islands Region
    Foods, 12 (4) (2023), p. 745, 10.3390/foods12040745

    View in ScopusGoogle ScholarRevelo-Mejía et al., 2022

    I.A. Revelo-Mejía, R. Gutiérrez-Idrobo, V.A. López-Fernández, A. López-Rosales, F.C. Astaiza-Montenegro, L. Garcés-Rengifo, P.A. López-Ordoñez, A. Hardisson, C. Rubio, Á.J. Gutiérrez, S. Paz
    Fluoride levels in river water from the volcanic regions of Cauca (Colombia)
    Environmental Monitoring and Assessment, 194 (5) (2022)

    Rocha et al., 2017

    R.A. Rocha, M. Calatayud, V. Devesa, D. Vélez
    Evaluation of exposure to fluoride in child population of North Argentina
    Environ. Sci. Pollut. Res. Int., 24 (27) (2017), pp. 22040-22047, 10.1007/s11356-017-9010-9

    View in ScopusGoogle ScholarRocha et al., 2013a

    Rocha, R.A., De la Fuente, B., Clemente, M.J., Ruiz, A., Vélez, D., Devesa, V. (2013a). Factors affecting the bioaccessibility of fluoride from seafood products. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association, 59, 104–110. https://doi.org/10.1016/j.fct.2013.05.042
    .

    Rocha et al., 2013b

    R.A. Rocha, D. Rojas, M.J. Clemente, A. Ruiz, V. Devesa, D. Vélez
    Quantification of fluoride in food by microwave acid digestion and fluoride ion-selective electrode
    J. Agric. Food Chem., 61 (45) (2013), pp. 10708-10713, 10.1021/jf403728r

    View in ScopusGoogle Scholar

    • Rocha-Barrasa, 2013
      Rocha-Barrasa, R.A. (2013). Fluoruro en alimentos: contenidos, bioaccesibilidad y absorción por el epitelio intestinal. Doctoral Dissertation. Universidad Politécnica de Valencia, Comunidad de Valencia, Spain. https://riunet.upv.es/handle/10251/27667.

    Rojanaworarit et al., 2021

    C. Rojanaworarit, L. Claudio, N. Howteerakul, et al.
    Hydrogeogenic fluoride in groundwater and dental fluorosis in Thai agrarian communities: a prevalence survey and case–control study
    BMC Oral. Health, 21 (2021), p. 545, 10.1186/s12903-021-01902-8

    View in ScopusGoogle ScholarRubio et al., 2020

    C. Rubio, I. Rodríguez, J.R. Jaudenes, A.J. Gutiérrez, S. Paz, A. Burgos, A. Hardisson, C. Revert
    Fluoride levels in supply water from a volcanic area in the Macaronesia region
    Environ. Sci. Pollut. Res. Int., 27 (11) (2020), pp. 11587-11595, 10.1007/s11356-020-07702-x

    View in ScopusGoogle ScholarRubio et al., 2020

    C. Rubio, I. Rodríguez, J.R. Jaudenes, A.J. Gutiérrez, S. Paz, A. Burgos, A. Hardisson, C. Revert
    Fluoride levels in supply water from a volcanic area in the Macaronesia region
    Environmental Science and Pollution Research, 27 (11) (2020), pp. 11587-11595

    CrossrefView in ScopusGoogle ScholarSaldarriaga et al., 2021

    A. Saldarriaga, D. Rojas-Gualdrón, M. Restrepo, L. Santos-Pinto, F. Jeremias
    Dental fluorosis severity in children 8-12 years old and associated factors. Severidad de fluorosis dental y factores asociados en niños de 8-12 años de edad
    Acta Odontol. Latinoam.: AOL, 34 (2) (2021), pp. 156-165, 10.54589/aol.34/2/156

    View in ScopusGoogle Scholar

    • Sheskin, 2004
      D.J. Sheskin
      Handbook of Parametric and Nonparametric Statistical Procedures
      Chapman & Hall, Boca Raton, Florida, USA (2004)

    Shi et al., 2009

    X. Shi, P. Zhuang, L. Zhang, G. Feng, L. Chen, J. Liu, L. Qu, R. Wang
    The bioaccumulation of fluoride ion (F-) in Siberian sturgeon (Acipenser baerii) under laboratory conditions
    Chemosphere, 75 (3) (2009), pp. 376-380, 10.1016/j.chemosphere.2008.12.042

    View PDFView articleView in ScopusGoogle ScholarSinger and Ophaug, 1986

    L. Singer, R.H. Ophaug
    Determination of fluoride in foods
    J. Agric. Food Chem., 34 (1986), pp. 510-513, 10.1021/jf00069a035

    View in ScopusGoogle ScholarSpano et al., 2023

    N. Spano, S. Bortolu, M. Addis, I. Langasco, A. Mara, M.I. Pilo, G. Sanna, P.P. Urgeghe
    An analytical protocol for the differentiation and the potentiometric determination of fluorine-containing fractions in bovine milk
    Molecules, 28 (2023), p. 1349, 10.3390/molecules28031349

    View in ScopusGoogle ScholarWaldbot, 1963

    G.L. Waldbot
    Fluoride in food
    Am. J. Clin. Nutr., 12 (6) (1963), pp. 455-462, 10.1093/ajcn/12.6.455

    Walton, 1987

    K.C. Walton
    Fluoride in bones of small rodents living in areas with different pollution levels
    Water Air Soil Pollut., 32 (1987), pp. 113-122, 10.1016/0143-1471(86)90019-X

    View in ScopusGoogle ScholarYang et al., 2023

    J. Yang, C. Tu, Q. Jiang, J. Wang, L. Li, R.B. Finkelman
    Analysis of multiple pathways and levels of fluoride intake in fluorosis areas of Southwest China
    Heliyon, 9 (3) (2023), p. 13651, 10.1016/j.heliyon.2023.e13651