Abstract

Fluoride exposure in drinking water has been widely related to impairment of cognitive function. Even though this ion has been described as neurotoxic for more than two decades, the molecular mechanisms of fluoride neurotoxicity are not fully understood, however, increasing evidence suggests that glial cells are the site of early injury in fluoride neurotoxicity. Nevertheless, a convergence point of many studies is the effect on glutamatergic neurotransmission and the generation of reactive oxygen species. In this context, we evaluated here the expression and regulation of the cystine/glutamate exchanger upon fluoride exposure since this transporter is in the interface between excitotoxicity and the antioxidant response. We demonstrate here the functional expression of the cystine /glutamate exchanger in both the U373 human glioblastoma cells and chick cerebellar Bergmann glia cells. Using a [3H]-L-Glutamate uptake assay, we demonstrate that fluoride increases the activity of the exchanger in a time and dose-dependent manner. This augmentation is mitigated by the antioxidant Trolox. To gain insight into fluoride neurotoxicity mechanisms, we evaluated its effect on human antigen R, a RNA binding protein, that binds to the 3′-UTR region of exchanger mRNA increasing its half time life. An increase in human antigen R protein was recorded after a 6 h fluoride exposure, suggesting that this ion regulates the exchanger through this RNA-binding protein. Furthermore, we show that fluoride exposure increases both the exchanger and human antigen R mRNAs half-life. These results provide insights into fluoride neurotoxicity mechanisms and support the notion of a central role of glial cells in neuronal glutamatergic transmission disruption that leads to neuronal cell death…

Conclusion

Our data supports the idea of a critical involvement of glial cells in F toxicity. Work currently under progress in our group is aimed at the characterization of the signaling pathways that regulate HuR function under F exposure as a preliminary step to further understand the complexity of the molecular mechanisms of F toxicity.

FULL-TEXT STUDY ONLINE AT https://link.springer.com/article/10.1007/s11064-025-04358-2

References

  1. Jia H, Qian H, Qu W, Zheng L, Feng W, Ren W (2019) Fluoride occurrence and human health risk in drinking water wells from southern edge of chinese loess plateau. Int J Environ Res Public Health 16(10):14. https://doi.org/10.3390/ijerph16101683

    Article  CAS  Google Scholar

  2. W. H. Organization, WHO recommendations on child health: guidelines approved by the WHO guidelines review committee, World Health Organization, 2017.

  3. Basha PM, Rai P, Begum S (2011) Evaluation of fluoride-induced oxidative stress in rat brain: a multigeneration study. Biol Trace Elem Res 142:623–637

    Article  CAS  PubMed  Google Scholar

  4. Zwierello W, Maruszewska A, Skórka-Majewicz M, Gutowska I (2023) Fluoride in the central nervous system and its potential influence on the development and invasiveness of brain tumours-a research hypothesis. Int J Mol Sci. https://doi.org/10.3390/ijms24021558

    Article  PubMed  PubMed Central  Google Scholar

  5. G. Philippe, Developmental fluoride neurotoxicity : an updated review, pp. 1–17 , publisher = Environmental Health, 2019.

  6. Harsheema Ottappilakkil P, Babu S, Balasubramanian S, Manoharan S, Ekambaram (2022) Fluoride Induced Neurobehavioral Impairments in experimental animals: a brief review. Biol Trace Element Res. https://doi.org/10.1007/s12011-022-03242-2

    Article  Google Scholar

  7. WHO, “A global overview of national regulations and standards for drinking-water quality.,” ed. World Health Organization, Geneva, 2021.

  8. M. Alfaro, M. Ortiz, M. Alarcón, C. Martínez, and J. Ledón, Inventario nacional de calidad del agua. arsénico y fluoruro en agua: riesgos y perspectivas desde la sociedad civil y la academia en México (no. Chapter 2). 2018.

  9. Grandjean P, Landrigan J (2014) Neurobehavioural effects of developmental toxicity. Lancet Neurol 13:330–338. https://doi.org/10.1016/S1474-4422(13)70278-3

    Article  CAS  PubMed  PubMed Central  Google Scholar

  10. Dec K et al (2019) Long-term exposure to fluoride as a factor promoting changes in the expression and activity of cyclooxygenases (COX1 and COX2) in various rat brain structures. Neurotoxicology 74:81–90. https://doi.org/10.1016/j.neuro.2019.06.001

    Article  CAS  PubMed  Google Scholar

  11. Inkielewicz I, Krechniak J (2003) Fluoride content in soft tissues and urine of rats exposed to sodium fluoride in drinking water. Fluoride 36:263–266

    CAS  Google Scholar

  12. Bittencourt LO et al (2023) Prolonged exposure to high fluoride levels during adolescence to adulthood elicits molecular, morphological, and functional impairments in the hippocampus. Sci Rep 13(1):11083. https://doi.org/10.1038/s41598-023-38096-8

    Article  CAS  PubMed  PubMed Central  Google Scholar

  13. Inkielewicz I, Krechniak J (2003) Fluoride content in soft tissues and urine of rats exposed to sodium fluoride in drinking water. Fluoride 36(4):263–266

    CAS  Google Scholar

  14. Agalakova NI, Nadei OV (2020) Inorganic fluoride and functions of brain. Crit Rev Toxicol 50(1):28–46. https://doi.org/10.1080/10408444.2020.1722061

    Article  CAS  PubMed  Google Scholar

  15. García-López A, Hernández-Castillo J, Hernández-Kelly L, Olivares-Bañuelos A, Ortega A (2020) Fluoride exposure affects glutamine uptake in müller glia cells. Neurotox Res 38:765–774. https://doi.org/10.1007/s12640-020-00263-4

    Article  CAS  PubMed  Google Scholar

  16. Srivastava S, Flora SJS (2020) Fluoride in drinking water and skeletal fluorosis: a review of the global impact. Curr Environ Health Rep 7(2):140–146. https://doi.org/10.1007/s40572-020-00270-9

    Article  CAS  PubMed  Google Scholar

  17. N. R. Council, D. o. Earth, L. Studies, B. o. E. Studies, and C. o. F. i. D. Water, Fluoride in drinking water: a scientific review of EPA’s standards, 2007.

  18. Sener Y, Tosun G, Kahvecioglu F, Gökalp A, Koç H (2007) Fluoride levels of human plasma and breast milk. Eur J Dent 1(1):21–24

    Article  PubMed  PubMed Central  Google Scholar

  19. Lee KH, Cha M, Lee BH (2020) Neuroprotective effect of antioxidants in the brain. Int J Mol Sci. https://doi.org/10.3390/ijms21197152

    Article  PubMed  PubMed Central  Google Scholar

  20. Robinson MB, Coyle JT (1987) ‘Glutamate and related acidic excitatory neurotransmitters: from basic science to clinical application. Faseb J 1(6):446–455. https://doi.org/10.1096/fasebj.1.6.2890549

    Article  CAS  PubMed  Google Scholar

  21. Abarbanel HD, Huerta R, Rabinovich MI (2002) Dynamical model of long-term synaptic plasticity. Proc Natl Acad Sci U S A 99(15):10132–10137. https://doi.org/10.1073/pnas.132651299

    Article  CAS  PubMed  PubMed Central  Google Scholar

  22. Potier B et al (2010) Reduction in glutamate uptake is associated with extrasynaptic NMDA and metabotropic glutamate receptor activation at the hippocampal CA1 synapse of aged rats. Aging Cell 9(5):722–735. https://doi.org/10.1111/j.1474-9726.2010.00593.x

    Article  CAS  PubMed  Google Scholar

  23. Rodríguez-Campuzano AG, Ortega A (2021) Glutamate transporters: critical components of glutamatergic transmission. Neuropharmacology 192:108602. https://doi.org/10.1016/j.neuropharm.2021.108602

    Article  CAS  PubMed  Google Scholar

  24. Rothstein J, Martin L, Levey A, Dykes-Hoberg M, Nash N, Kuncl R (1994) Localization of neuronal and glial glutamate transporters. Neuron 13:713–725. https://doi.org/10.1007/s00103-015-2220-8

    Article  CAS  PubMed  Google Scholar

  25. Ottestad-Hansen S et al (2018) The cystine-glutamate exchanger (xCT, Slc7a11) is expressed in significant concentrations in a subpopulation of astrocytes in the mouse brain. Glia 66(5):951–970. https://doi.org/10.1002/glia.23294

    Article  PubMed  Google Scholar

  26. Sato H, Tamba M, Ishii T, Bannai S (1999) Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 274(17):11455–11458. https://doi.org/10.1074/jbc.274.17.11455

    Article  CAS  PubMed  Google Scholar

  27. Shi J, He Y, Hewett SJ, Hewett JA (2016) Interleukin 1 ? regulation of the system x c ? substrate- specific subunit, xCT, primary mouse astrocytes involves the rna-binding protein HuR. J Biol Chemis 291(4):1643–1651. https://doi.org/10.1074/jbc.M115.697821

    Article  CAS  Google Scholar

  28. Bridges D, Lutgen R, Lobner V, Baker D (2012) Thinking outside the cleft to understand synaptic activity: contribution of the cystine-glutamate antiporter (System xc-) to normal and pathological glutamatergic signaling. Pharmacol Rev 64:780–802

    Article  CAS  PubMed  PubMed Central  Google Scholar

  29. J. Lewerenz et al., “The cystine / glutamate antiporter system x c – in Health and disease : from molecular mechanisms,” 18(5): 522–555, 2013, https://doi.org/10.1089/ars.2011.4391.

  30. Liu X, Zhang Y, Zhuang L, Olszewski K, Gan B (2021) NADPH debt drives redox bankruptcy: SLC7A11/xCT-mediated cystine uptake as a double-edged sword in cellular redox regulation. Genes Dis 8(6):731–745. https://doi.org/10.1016/j.gendis.2020.11.010

    Article  CAS  PubMed  Google Scholar

  31. Suárez-Pozos E et al (2017) Characterization of the cystine/glutamate antiporter in cultured bergmann glia cells. Neurochem 108:52–59. https://doi.org/10.1016/j.neuint.2017.02.011

    Article  CAS  Google Scholar

  32. M. Dahlmanns, J. K. Dahlmanns, N. Savaskan, H. H. Steiner, and E. Yakubov, 2023 “Glial Glutamate Transporter-Mediated Plasticity: System x(c)(-)/xCT/SLC7A11 and EAAT1/2 in Brain Diseases,” (in eng), Front Biosci (Landmark Ed), https://doi.org/10.31083/j.fbl2803057.

  33. Silva-Adaya D, Ramos-Chávez LA, Petrosyan P, González-Alfonso WL, Pérez-Acosta A, Gonsebatt ME (2020) Early neurotoxic effects of inorganic arsenic modulate cortical GSH levels associated with the activation of the Nrf2 and NF?B pathways, expression of amino acid transporters and NMDA receptors and the production of hydrogen sulfide. Front Cell Neurosci 14:17. https://doi.org/10.3389/fncel.2020.00017

    Article  CAS  PubMed  PubMed Central  Google Scholar

  34. Singh G, Pratt G, Yeo GW, Moore MJ (2015) The clothes make the mrna: past and present trends in mrnp fashion. Annu Rev Biochem 84:325–354. https://doi.org/10.1146/annurev-biochem-080111-092106

    Article  CAS  PubMed  PubMed Central  Google Scholar

  35. Ocharán-Mercado A et al (2023) RNA-binding proteins: a role in neurotoxicity? Neurotox Res 41(6):681–697

    Article  PubMed  PubMed Central  Google Scholar

  36. Bakheet T, Hitti E, Al-Saif M, Moghrabi WN, Khabar KSA (2018) The AU-rich element landscape across human transcriptome reveals a large proportion in introns and regulation by ELAVL1/HuR. Gene Regulat Mech. https://doi.org/10.1016/j.bbagrm.2017.12.006

    Article  Google Scholar

  37. Borgonetti V, Galeotti N (2023) Posttranscriptional regulation of gene expression participates in the myelin restoration in mouse models of multiple sclerosis: antisense modulation of HuR and HuD ELAV RNA binding protein. Mol Neurobiol 60(5):2661–2677. https://doi.org/10.1007/s12035-023-03236-8

    Article  CAS  PubMed  PubMed Central  Google Scholar

  38. Pereira B, Billaud M, Almeida R (2017) RNA-binding proteins in cancer: old players and new actors. Trends in Cancer 3(7):506–528. https://doi.org/10.1016/j.trecan.2017.05.003

    Article  CAS  PubMed  Google Scholar

  39. Schultz CW, Brody JR, Preet R, Dhir T, Dixon DA (2020) Understanding and targeting the disease-related RNA binding protein human antigen R ( HuR ). WIREs RNA. https://doi.org/10.1002/wrna.1581

    Article  PubMed  Google Scholar

  40. Somogyi P, Eshhar N, Teichberg VI, Roberts JD (1990) Subcellular localization of a putative kainate receptor in bergmann glial cells using a monoclonal antibody in the chick and fish cerebellar cortex. Neuroscience 35(1):9–30. https://doi.org/10.1016/0306-4522(90)90116-l

    Article  CAS  PubMed  Google Scholar

  41. Martínez-Lozada Z, Ortega A (2015) Glutamatergic transmission: a matter of three. Neural Plast 2015:1–11. https://doi.org/10.1155/2015/787396

    Article  Google Scholar

  42. Polewski MD, Reveron-Thornton RF, Cherryholmes GA, Marinov GK, Cassady K, Aboody KS (2016) Increased expression of system xc- in glioblastoma confers an altered metabolic state and temozolomide resistance. Mol Cancer Res 14(12):1229–1242. https://doi.org/10.1158/1541-7786.mcr-16-0028

    Article  CAS  PubMed  PubMed Central  Google Scholar

  43. Ortega A, Eshhar N, Teichberg VI (1991) Properties of kainate receptor/channels on cultured Bergmann glia. Neuroscience 41(2–3):335–349. https://doi.org/10.1016/0306-4522(91)90331-h

    Article  CAS  PubMed  Google Scholar

  44. Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89(2):271–277. https://doi.org/10.1016/0022-1759(86)90368-6

    Article  CAS  PubMed  Google Scholar

  45. Repetto G, del Peso A, Zurita JL (2008) Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 3(7):1125–1131. https://doi.org/10.1038/nprot.2008.75

    Article  CAS  PubMed  Google Scholar

  46. Borenfreund E, Puerner JA (1985) Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol Lett 24(2–3):119–124. https://doi.org/10.1016/0378-4274(85)90046-3

    Article  CAS  PubMed  Google Scholar

  47. H. Yamamura, S. Ennna, and M. Kuhar, Neurotransmitter receptor binding, 2nd ed. ed. Raven Press, 1985, pp. 1–242.

  48. Strunecka A, Strunecky O (2020) Mechanisms of fluoride toxicity: from enzymes to underlying integrative networks. Appl Sci 10(20):7100

    Article  CAS  Google Scholar

  49. Flores-Méndez M, Ramírez D, Alamillo N, Hernández-Kelly L, Del Razo LM, Ortega A (2014) Fluoride exposure regulates the elongation phase of protein synthesis in cultured Bergmann glia cells. Toxicol Lett 229:126–133. https://doi.org/10.1016/j.toxlet.2014.06.022

    Article  CAS  PubMed  Google Scholar

  50. Chase L et al (2020) Hydrogen peroxide triggers an increase in cell surface expression of system xc? in cultured human glioma cells. Neurochem Int. https://doi.org/10.1016/j.neuint.2019.104648

    Article  PubMed  Google Scholar

  51. Lewerenz J, Maher P, Methner A (2012) Regulation of xCT expression and system x c- function in neuronal cells. Amino Acids 42(1):171–179. https://doi.org/10.1007/s00726-011-0862-x

    Article  CAS  PubMed  Google Scholar

  52. Mesci P et al (2015) System xC- is a mediator of microglial function and its deletion slows symptoms in amyotrophic lateral sclerosis mice. Brain 138(Pt 1):53–68. https://doi.org/10.1093/brain/awu312

    Article  PubMed  Google Scholar

  53. K. Komiyama et al., Glioma facilitates the epileptic and tumor-suppressive gene expressions in the surrounding region.

  54. Dun Y et al (2006) Expression of the cystine-glutamate exchanger (xc-) in retinal ganglion cells and regulation by nitric oxide and oxidative stress. Cell Tissue Res 324(2):189–202. https://doi.org/10.1007/s00441-005-0116-x

    Article  CAS  PubMed  PubMed Central  Google Scholar

  55. Chase LA, Roon RJ, Wellman L, Beitz AJ, Koerner JF (2001) L-Quisqualic acid transport into hippocampal neurons by a cystine-sensitive carrier is required for the induction of quisqualate sensitization. Neuroscience 106(2):287–301. https://doi.org/10.1016/s0306-4522(01)00278-0

    Article  CAS  PubMed  Google Scholar

  56. Dec K et al (2020) Chronic exposure to fluoride affects GSH level and NOX4 expression in rat model of this element of neurotoxicity. Biomolecules. https://doi.org/10.3390/biom10030422

    Article  PubMed  PubMed Central  Google Scholar

  57. Wang J, Guo Y, Chu H, Guan Y, Bi J, Wang B (2013) Multiple functions of the RNA-binding protein HuR in cancer progression, treatment responses and prognosis. Int J Mol Sci 14(5):10015–10041. https://doi.org/10.3390/ijms140510015

    Article  CAS  PubMed  PubMed Central  Google Scholar

  58. Barbier O, Arreola-Mendoza L, Del Razo LM (2010) Molecular mechanisms of fluoride toxicity. Chem Biol Interact 188(2):319–333. https://doi.org/10.1016/j.cbi.2010.07.011

    Article  CAS  PubMed  Google Scholar

  59. Bartos M et al (2018) Alterations in the memory of rat offspring exposed to low levels of fluoride during gestation and lactation: involvement of the ?7 nicotinic receptor and oxidative stress. Reproduct Toxicol 81:108–114. https://doi.org/10.1016/j.reprotox.2018.07.078

    Article  CAS  Google Scholar

  60. Ottappilakkil H, Babu S, Balasubramanian S, Manoharan S, Perumal E (2022) Fluoride induced neurobehavioral impairments in experimental animals: a brief review. Biol Trace Element Res 0123456789:1214. https://doi.org/10.1007/s12011-022-03242-2

    Article  CAS  Google Scholar

  61. Whitford GM, Whitford JL, Hobbs SH (2009) Appetitive-based learning in rats: lack of effect of chronic exposure to fluoride. Neurotoxicol Teratol. https://doi.org/10.1016/j.ntt.2009.02.003

    Article  PubMed  Google Scholar

  62. Wang C et al (2018) Co-exposure to fluoride and sulfur dioxide on histological alteration and DNA damage in rat brain,” (in eng) Co-exposure to fluoride and sulfur dioxide on histological alteration and DNA damage in rat brain. J Biochem Mol Toxicol. https://doi.org/10.1002/jbt.22023

    Article  PubMed  PubMed Central  Google Scholar

  63. Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14(6):724–738. https://doi.org/10.1016/j.cmet.2011.08.016

    Article  CAS  PubMed  Google Scholar

  64. Bylicky MA, Mueller GP, Day RM (2018) Mechanisms of endogenous neuroprotective effects of astrocytes in brain injury. Oxid Med Cell Longev 2018:6501031. https://doi.org/10.1155/2018/6501031

    Article  CAS  PubMed  PubMed Central  Google Scholar

  65. Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10(Suppl):S18-25. https://doi.org/10.1038/nrn1434

    Article  CAS  PubMed  Google Scholar

  66. Stogsdill JA, Eroglu C (2017) The interplay between neurons and glia in synapse development and plasticity. Curr Opin Neurobiol 42:1–8. https://doi.org/10.1016/j.conb.2016.09.016

    Article  CAS  PubMed  Google Scholar

  67. McKinney RA (2010) Excitatory amino acid involvement in dendritic spine formation, maintenance and remodelling. J Physiol 588(Pt 1):107–116. https://doi.org/10.1113/jphysiol.2009.178905

    Article  CAS  PubMed  Google Scholar

  68. Mahmoud S, Gharagozloo M, Simard C, Gris D (2019) Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release. Cells 8(2):184. https://doi.org/10.3390/cells8020184

    Article  CAS  PubMed  PubMed Central  Google Scholar

  69. Glisovic T, Bachorik JL, Yong J, Dreyfuss G (2008) RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett 582(14):1977–1986. https://doi.org/10.1016/j.febslet.2008.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar

  70. Xu LZ et al (2023) NMDA receptor GluN2B subunit is involved in excitotoxicity mediated by death-associated protein kinase 1 in Alzheimer’s Disease. J Alzheimers Dis 91(2):877–893. https://doi.org/10.3233/jad-220747

    Article  CAS  PubMed  Google Scholar

  71. Li Y, Tan Z, Li Z, Sun Z, Duan S, Li W (2012) Impaired long-term potentiation and long-term memory deficits in xCT-deficient sut mice,. Biosci Rep 32(3):315–321. https://doi.org/10.1042/bsr20110107

    Article  CAS  PubMed  Google Scholar

  72. De Bundel D et al (2011) Loss of system x(c)- does not induce oxidative stress but decreases extracellular glutamate in hippocampus and influences spatial working memory and limbic seizure susceptibility. J Neurosci 31(15):5792–5803. https://doi.org/10.1523/jneurosci.5465-10.2011

    Article  PubMed  PubMed Central  Google Scholar

  73. Xu H, Zhou YL, Zhang JM, Liu H, Jing L, Li GS (2007) Effects of fluoride on the intracellular free Ca2+ and Ca2+-ATPase of kidney. Biol Trace Elem Res 116(3):279–288. https://doi.org/10.1007/bf02698012

    Article  CAS  PubMed  Google Scholar

  74. Anke Doller E, Pfeilschifter J, Wolfgang, (2008) Signalling pathways regulating nucleo-cytoplasmic shuttling of the mRNA-binding protein HuR. Cell Signall 20:2165–2173. https://doi.org/10.1016/j.cellsig.2008.05.007

    Article  CAS  Google Scholar

  75. Marco AF-M, Martínez-Lozada Z, Monroy HC, Hernández-Kelly LC, Barrera I, Ortega A (2013) Glutamate-dependent translational control in cultured bergmann glia cells: EIF2? phosphorylation. Neurochem Res 38(7):1324–1332. https://doi.org/10.1007/s11064-013-1024-1

    Article  CAS  Google Scholar

Download references

Authors and Affiliations

Funding

This study was supported by a Conahcyt grant (CF2023-I-935) to AO. A O-M was supported by a Conahcyt-Mexico scholarship (No. 779191).