Abstract

Highlights

  • Fluoride induces hepatointestinal damage by altering bile acid synthesis, transporters, and FXR-FGF15 signal regulation.
  • Vitamin B2 attenuates fluoride-induced enterohepatic circulation dysfunction through IL-17A and ileal microbiome.
  • Bifidobacterium supplementation reverses fluoride-induced hepatointestinal injury.
  • VB2 supplementation is an effective strategy for alleviating fluorosis.

Introduction

Fluorosis is a global public health disease affecting more than 50 countries and 500 million people. Excessive fluoride damages the liver and intestines, yet the mechanisms and therapeutic approaches remain unclear.

Objectives

To explore the mechanisms by which fluoride-induced intestinal-hepatic damage and vitamin B2 alleviation.

Methods

Fluoride and/or vitamin B2-treated IL-17A knockout and wild-type mouse models were established, the morphological and functional changes of liver and gut, total bile acid biosynthesis, metabolism, transport, and regulation of FXR-FGF15 signaling pathways were evaluated, the ileal microbiome was further analyzed by 16S rDNA sequence. Finally, Bifidobacterium supplementation mouse model was designed and re-examined the above indicators.

Results

The results demonstrated that fluoride induced hepatointestinal injury and enterohepatic circulation disorder by altering the synthesis, transporters, and FXR-FGF15 pathway regulation of total bile acid. Importantly, the ileum was found to be the most sensitive and fluoride changed ileal microbiome particularly by reducing abundance of Bifidobacterium. While vitamin B2 supplementation attenuated fluoride-induced enterohepatic circulation dysfunction through IL-17A and ileal microbiome, Bifidobacterium supplementation also reversed fluoride-induced hepatointestinal injury.

Conclusion

Fluoride induces morphological and functional impairment of liver and gut tissues, as well as enterohepatic circulation disorder by altering total bile acid (TBA) synthesis, transporters, and FXR-FGF15 signaling regulation. Vitamin B2 attenuated fluoride-induced enterohepatic circulation disorder through IL-17A knockout and ileal microbiome regulation. The ileum was found to be the most sensitive to fluoride, leading to changes in ileal microbiome, particularly the reduction of Bifidobacterium. Furthermore, Bifidobacterium supplementation reversed fluoride-induced hepatointestinal injury. This study not only elucidates a novel mechanism by which fluoride causes hepatointestinal toxicity, but also provides a new physiological function of vitamin B2, which will be useful in the therapy of fluorosis and other hepatoenterological diseases.

Graphical abstract

https://ars.els-cdn.com/content/image/1-s2.0-S2090123224003175-ga1_lrg.jpg

  1. Download: Download high-res image (81KB)
  2. Download: Download full-size image

Full-text study online at https://www.sciencedirect.com/science/article/pii/S2090123224003175?via%3Dihub

Appendix A. Supplementary material

The following are the Supplementary data to this article:

Data availability

The raw sequencing data generated during and analysed during the current study is available in the NCBI Sequence Read Archive repository [https://www.ncbi.nlm.nih.gov/sra/PRJNA1026318]. Other raw datas and supplementary informations generated during and analysed during the current study are available in the Figshare repository [https://doi.org/10.6084/m9.figshare.24228859].