Abstract

Highlights

  • Fluoride affects spermatogenesis by disrupting the expression of SPO11 and REC8.
  • Fluoride activates testicular pyroptosis through both typical and atypical pathways.
  • Bifidobacterium attenuates fluoride-induced testicular pyroptosis.
  • IL-17A is involved in fluoride-induced pyroptosis and Bifidobacterium intervention.

Fluoride, a ubiquitous environmental pollutant, poses a significant public health threat. Our previous study revealed a correlation between fluoride-induced testicular pyroptosis and male reproductive dysfunction. However, the underlying mechanism remains unclear. Wild-type and interleukin 17A knockout mice were exposed to sodium fluoride (100 mg/L) in deionized drinking water for 18 weeks. Bifidobacterium intervention (1 × 109 CFU/mL, 0.2 mL/day, administered via gavage) commenced in the 10th week. Sperm quality, testicular morphology, key pyroptosis markers, spermatogenesis key genes, IL-17A signaling pathway, and pyroptosis pathway related genes were determined. The results showed that fluoride reduced sperm quality, damaged testicular morphology, affected spermatogenesis, elevated IL-17A levels, and induced testicular pyroptosis. Bifidobacterium intervention alleviated adverse reproductive outcomes. Fluoride-activated testicular pyroptosis through both typical and atypical pathways, with IL-17A involvement. Bifidobacterium supplementation attenuated pyroptosis by downregulating IL-17A, inhibiting NLRP3 and PYRIN-mediated caspase-1 and caspase-11 dependent pathways in testis, thereby alleviating fluoride-induced male reproductive damage. In summary, this study uncovers the mechanism underlying fluorine-induced testicular pyroptosis and illustrates the novel protecting feature of Bifidobacterium against fluoride-induced harm to male reproduction, along with its potential regulatory mechanism. These results provide fresh perspectives on treating male reproductive dysfunction resulting from fluoride or other environmental toxins.

Original abstract online at https://www.sciencedirect.com/science/article/abs/pii/S004896972402179X