References Rasool A, Farooqi A, Xiao T, Ali W, Noor S, Abiola O, Ali S, Nasim W (2018) A review of global outlook on fluoride contamination in groundwater with prominence on the Pakistan current situation. Environ Geochem Health 40:1265–1281. https://doi.org/10.1007/s10653-017-0054-z CAS  Article  PubMed  Google Scholar Lennon MA, Whelton H, O’Mullane D, Ekstrand J (2004) Fluoride. Rolling revision of the WHO guidelines for drinking-water quality. World Health Orga

Abstract

The primary source of fluoride exposure is groundwater, but evidence suggests that beverages and food are additional fluoride sources. Intake of these products at an early age affects the optimal functioning of soft organs. An increase in sweetened beverage consumption by the pediatric population has been reported, suggesting an increase in fluoride exposure. The objectives of this study were to determine the fluoride concentrations in beverages and analyze the risk to human health from fluoride exposure to sweetened beverages consumed by children. Eighty-two sugar-sweetened beverages produced in different Mexican states were analyzed. The fluoride determination was carried out with an ion-selective electrode. The highest fluoride concentration was 1.92 mg/L; 73.2% of beverages showed fluoride values above permitted limits. Low-cost beverages had the highest fluoride values, suggesting that the water used for their production does not comply with fluorine regulations. According to the risk assessment in children from 3 to 6 years, the daily consumption of juices and sodas with concentrations that exceeded the normative of 0.7 mg/L could represent a risk to dental fluorosis development. It is crucial to control fluoride and regulate its concentrations in beverages for children to ensure food safety, especially in areas of endemic hydrofluorosis.


*Original abstract online at https://link.springer.com/article/10.1007/s12011-022-03350-z


 

Excerpt:

References

  1. Rasool A, Farooqi A, Xiao T, Ali W, Noor S, Abiola O, Ali S, Nasim W (2018) A review of global outlook on fluoride contamination in groundwater with prominence on the Pakistan current situation. Environ Geochem Health 40:1265–1281. https://doi.org/10.1007/s10653-017-0054-z

    CAS  Article  PubMed  Google Scholar

  2. Lennon MA, Whelton H, O’Mullane D, Ekstrand J (2004) Fluoride. Rolling revision of the WHO guidelines for drinking-water quality. World Health Organization. Switzerland.

  3. Ministry of Health (1994) Norma Oficial Mexicana NOM-127-SSA1–1994, Salud ambiental, agua para uso y consumo humano-limites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilizacion. http://www.salud.gob.mx/unidades/cdi/nom/127ssa14.html Accessed 8 February 2022

  4. Barbier O, Arreola L, Del Razo L (2010) Molecular mechanisms of fluoride toxicity. Chem Biol Inter 188:319–333. https://doi.org/10.1016/j.cbi.2010.07.011

    CAS  Article  Google Scholar

  5. Limón-Pacheco JH, Jiménez-Córdova MI, Cárdenas-González M, Sánchez-Retana IM, Gonsebatt ME, Del Razo LM (2018) Potential co-exposure to arsenic and fluoride and biomonitoring equivalents for Mexican children. Ann Glob Health 27:257–273. https://doi.org/10.29024/aogh.913

    Article  Google Scholar

  6. Alarcón-Herrera MT, Bundschuh J, Nath B, Nicolli HB, Gutierrez M, Reyes-Gomez VM, Nuñez D, Martín-Dominguez IR, Sracek O (2013) Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: genesis, mobility and remediation. J Hazard Mater 15:960–969. https://doi.org/10.1016/j.jhazmat.2012.08.005

    CAS  Article  Google Scholar

  7. Marimon MPC, Roisenberg A, Suhogusoff AV, Viero AP (2013) Hydrogeochemistry and statistical analysis applied to understand fluoride provenance in the Guarani Aquifer System, Southern Brazil. Environ Geochem Health 35:391–403. https://doi.org/10.1007/s10653-012-9502-y

    CAS  Article  PubMed  Google Scholar

  8. Martinez-Acuna MI, Mercado-Reyes M, Alegria-Torres JA, Mejia-Saavedra JJ (2016) Preliminary human health risk assessment of arsenic and fluoride in tap water from Zacatecas, Mexico. Environ Monitor Asses 188:476. https://doi.org/10.1007/s10661-016-5453-6

    CAS  Article  Google Scholar

  9. Aguilar-Díaz FC, Morales-Corona F, Cintra-Viveiro AC, de la Fuente-Hernández J (2017) Prevalence of dental fluorosis in Mexico 2005–2015: a literature review. Sal Pub Mex 59:306–313. https://doi.org/10.21149/7764

    Article  Google Scholar

  10. Kanduti D, Sterbenk P, Artnik A (2016) Fluoride: a review of use and effects on health. Mat Soc Med 28:133. https://doi.org/10.5455/msm.2016.28.133-137

    Article  Google Scholar

  11. Martinez-Mier EA, Spencer KL, Sanders BJ, Jones JE, Soto-Rojas AE, Tomlin AM, Vinson LA, Weddell JA, Eckert GJ (2017) Fluoride in the diet of 2-years-old children. Comm Dent Oral Epidemiol 45:251–257. https://doi.org/10.1111/cdoe.12283

    CAS  Article  Google Scholar

  12. Cantoral A, Luna-Villa LC, Mantilla-Rodriguez AA, Mercado A, Lippert F, Liu Y, Peterson KE, Hu H, Téllez-Rojo MM, Martinez-Mier EA (2019) Fluoride content in foods and beverages from Mexico City markets and supermarkets. Food Nutr Bull 40:514–531. https://doi.org/10.1177/0379572119858486

    Article  PubMed  Google Scholar

  13. Lodi CS, Ramires I, Pessan JP, das Neves LT, Buzalaf MA (2007) Fluoride concentrations in industrialized beverages consumed by children in the city of Bauru, Brazil. J Appl Oral Sci 15:209–212. https://doi.org/10.1590/s1678-77572007000300010

    CAS  Article  PubMed  PubMed Central  Google Scholar

  14. Townsend JA, Thompson T, Vaughn S, Wang Y, Yu Q, Xu X, Wen ZT (2019) Analysis of fluoride content in alternative milk beverages. J Clin Pediatr Dent 43:388–392. https://doi.org/10.17796/1053-4625-43.6.5

    Article  PubMed  PubMed Central  Google Scholar

  15. Valdez JL, Calderón HJ, Córdova ARI, Sandoval ASY, Alegría TJA, Costilla SR, Rocha AD (2019) Level of exposure to fluorides by the consumption of different types of milk in residents from an area of Mexico with endemic hydrofluorosis. An Pediatr (Engl Ed) 90:342–348. https://doi.org/10.1016/j.anpedi.2018.10.005

    Article  Google Scholar

  16. Till C, Green R, Flora D, Hornung R, Martinez-Mier EA, Blazer M, Farmus L, Ayotte P, Muckle G, Lanphear B (2020) Fluoride exposure from infant formula and child IQ in a Canadian birth cohort. Environ Inter 134:105315. https://doi.org/10.1016/j.envint.2019.105315

    CAS  Article  Google Scholar

  17. Stern D, Piernas C, Barquera S, Rivera JA, Popkin BM (2014) Caloric beverages were major sources of energy among children and adults in Mexico, 1999–2012. J Nutr 144:949–956. https://doi.org/10.3945/jn.114.190652

    CAS  Article  PubMed  PubMed Central  Google Scholar

  18. Charvel S, Cobo F, Hernández-Ávila M (2015) A process to establish nutritional guidelines to address obesity: lessons from Mexico. J Pub Health Pol 36:426–439. https://doi.org/10.1057/jphp.2015.28

    Article  Google Scholar

  19. Opydo-Szymaczek J, Opydo J (2010) Fluoride content of beverages intended for infants and young children in Poland. Food Chem Toxicol 48:2702–3276. https://doi.org/10.1016/j.fct.2010.06.043

    CAS  Article  PubMed  Google Scholar

  20. Wasana HM, Perera GD, Gunawardena PS, Fernando PS, Bandara J (2017) WHO water quality standards vs synergic effects of fluoride, heavy metals and hardness in drinking water on kidney tissues. Sci Rep 14:42516. https://doi.org/10.1038/srep42516

    CAS  Article  Google Scholar

  21. Malin JA, Lesseur C, Busgang SA, Curtin P, Wright RO, Sanders AP (2019) Fluoride exposure and kidney and liver function among adolescents in the United States: NHANES, 2013–2016. Environ Int 132:105012. https://doi.org/10.1016/j.envint.2019.105012

    CAS  Article  PubMed  PubMed Central  Google Scholar

  22. Liu L, Wang M, Li Y, Liu H, Hou C, Zeng Q, Li P, Zhao Q, Dong L, Yu X, Liu L, Zhang S, Wang A (2019) Low-to-moderate fluoride exposure in relation to overweight and obesity among school-age children in China. Ecotoxicol Environ 15:109558. https://doi.org/10.1016/j.ecoenv.2019.109558

    CAS  Article  Google Scholar

  23. Rocha-Amador D, Navarro ME, Carrizales L, Morales R, Calderón J (2007) Decreased intelligence in children and exposure to fluoride and arsenic in drinking water. Cad Saúde Púb 23:S579–S587. https://doi.org/10.1590/S0102-311X2007001600018

    Article  Google Scholar

  24. Mohammadi AA, Yousefi M, Yaseri M, Jalilzadeh M, Mahvi AH (2017) Skeletal fluorosis in relation to drinking water in rural areas of West Azerbaijan, Iran. Sci Rep 7:17300. https://doi.org/10.1038/s41598-017-17328-8

    CAS  Article  PubMed  PubMed Central  Google Scholar

  25. Keramati H, Miri A, Baghaei M, Rahimizadeh A, Ghorbani R, Fakhri Y, Bay A, Moradi M, Bahmani Z, Ghaderpoori M, Mousavi Khaneghah A (2019) Fluoride in Iranian drinking water resources: a systematic review, meta-analysis and non-carcinogenic risk assessment. Biol Trace Elem Res 188:261–273. https://doi.org/10.1007/s12011-018-1418-7

    CAS  Article  PubMed  Google Scholar

  26. Das K, Mondal NK (2016) Dental fluorosis and urinary fluoride concentration as a reflection of fluoride exposure and its impact on IQ level and BMI of children of Laxmisagar, Simlapal Block of Bankura District, W.B., India. Environ Mon Assess 188:218. https://doi.org/10.1007/s10661-016-5219-1

    CAS  Article  Google Scholar

  27. Bashash M, Thomas D, Hu H, Martinez-Mier EA, Sanchez BN, Basu N, Peterson KE, Ettinger AS, Wright R, Zhang Z, Liu Y, Schnaas L, Mercado-García A, Téllez-Rojo MM, Hernández-Avila M (2017) Prenatal fluoride exposure and cognitive outcomes in children at 4 and 6–12 years of age in Mexico. Environ Health Perspect 125:097017. https://doi.org/10.1289/EHP655

    Article  PubMed  PubMed Central  Google Scholar

  28. Valdez JL, López Guzmán OD, Cervantes FM, Costilla-Salazar R, Calderón HJ, Alcaraz CY, Rocha-Amador DO (2017) In utero exposure to fluoride and cognitive development delay in infants. Neurotoxicology 59:65–70. https://doi.org/10.1016/j.neuro.2016.12.011

    CAS  Article  Google Scholar

  29. Loyola-Rodríguez JP, Pozos-Guillén AJ, Hernández-Guerrero JC (1998) Bottled drinks as additional source of fluoride exposure. Sal Pub Mex 40:438–531. https://doi.org/10.1590/S0036-36341998000500008

    Article  Google Scholar

  30. US EPA (1996) O. SW-846 test method 9214: potentiometric determination of fluoride in aqueous samples with ion-selective electrode.https://www.epa.gov/sites/default/files/2015-12/documents/9214.pdf Accessed 14 March 2022

  31. Pérez-Vázquez FJ, González-Martell AD, Fernández-Macias JC, Rocha-Amador DO, González-Palomo AK, Ilizaliturri-Hernández CA, González-Mille DJ, Cilia-Lopez VG (2021) Health risk assessment in children living in an urban area with hydrofluorosis: San Luis Potosí Mexico case study. J Trace Elem Med Biol 68:126863. https://doi.org/10.1016/j.jtemb.2021.126863

    CAS  Article  PubMed  Google Scholar

  32. ATSDR (2003) Fluorides, hydrogen fluoride and fluorine. Agency for Toxic Substances and Disease Registry (ATSDR). https://www.atsdr.cdc.gov/toxprofiles/tp11.pdf. Accessed 24 February 2022

  33. Official Journal of the Federation (2010) Ley Federal de Protección de Datos Personales en Posesión de los Particulares, 2010. http://dof.gob. mx/nota_detalle.php?codigo=5150631&fecha=05/07/2010. Accessed 17 February 2022

  34. Grijalva-Haro MI, Barba-Leyva, ME, Laborin-Alvarez A (2001) Fluoride intake and excretion in children of Hermosillo, Sonora, Mexico. Sal Pub Mex 43: 127–134. http://www.scielo.org.mx/pdf/spm/v43n2/a08v43n2.pdf Accessed 29 March 2022

  35. Molina-Frechero N, Gaona E, Angulo M, Sanchez PL, Gonzalez GR, Nevarez RM, Bologna-Molina R (2015) Fluoride exposure effects and dental fluorosis in children in Mexico City. Med Sci Monitor 21:3664–3670. https://doi.org/10.12659/msm.895351

    CAS  Article  Google Scholar

  36. Molina FN, Sanchez PL, Castaneda CE, Oropeza OA, Gaona E, Salas PJ, Bologna MR (2013) Drinking water fluoride levels for a city in northern Mexico (Durango) determined using a direct electrochemical method and their potential effects on oral health. Sci World J 2013:186392. https://doi.org/10.1155/2013/186392

    CAS  Article  Google Scholar

  37. Alarcón-Herrera MT, Martin-Alarcon DA, Gutiérrez M, Reynoso-Cuevas L, Martín-Domínguez A, Olmos-Márquez MA, Bundschuh J (2020) Co-occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico: geographical data visualization. Sci Total Environ 1(698):134168. https://doi.org/10.1016/j.scitotenv.2019.134168

    CAS  Article  Google Scholar

  38. Jia H, Qian H, Qu W, Zheng L, Feng W, Ren W (2019) Fluoride occurrence and human health risk in drinking water wells from southern edge of Chinese Loess Plateau. Int J Environ Res Public Health 16:1683. https://doi.org/10.3390/ijerph16101683

    CAS  Article  PubMed Central  Google Scholar

  39. Jiménez-Córdova MI, González-Horta C, Ayllón-Vergara JC, Arreola-Mendoza L, Aguilar-Madrid G, Villareal-Vega EE, Barrera-Hernández Á, Barbier OC, del Razo LM (2019) Evaluation of vascular and kidney injury biomarkers in Mexican children exposed to inorganic fluoride. Environ Res 169:220–228. https://doi.org/10.1016/j.envres.2018.10.028

    CAS  Article  PubMed  Google Scholar

  40. Perez-Perez N, Torres-Mendoza N, Borges-Yanez A, Irigoyen-Camacho ME (2014) Dental fluorosis: concentration of fluoride in drinking water and consumption of bottled beverages in school children. J Clin Ped Dent 38:338–344. https://doi.org/10.17796/jcpd.38.4.e77h557k0005077n

    CAS  Article  Google Scholar

  41. Fernández-Macias JC, Ochoa-Martínez AC, Orta-García ST, Varela-Silva JA, Pérez-Maldonado IN (2020) Probabilistic human health risk assessment associated with fluoride and arsenic co-occurrence in drinking water from the metropolitan area of San Luis Potosí, Mexico. Environ Monit Assess 192:712. https://doi.org/10.1007/s10661-020-08675-7

    CAS  Article  PubMed  Google Scholar

  42. Choi AL, Sun G, Zhang Y, Grandjean P (2012) Developmental fluoride neurotoxicity: a systematic review and meta-analysis. Environ Health Perspectives 120:1362–1368. https://doi.org/10.1289/ehp.1104912

    CAS  Article  Google Scholar

  43. Nanayakkara S, Senevirathna STMLD, Harada KH, Chandrajith R, Nanayakkara N, Koizumi A (2020) The influence of fluoride on chronic kidney disease of uncertain aetiology (CKDu) in Sri Lanka. Chemosphere 257:127186. https://doi.org/10.1016/j.chemosphere.2020.127186

    CAS  Article  PubMed  Google Scholar

  44. Vrijheid M, Casas M, Gascon M, Valvi D, Nieuwenhuijsen M (2016) Environmental pollutants and child health-a review of recent concerns. Int J Hyg Environ Health 219:331–342. https://doi.org/10.1016/j.ijheh.2016.05.001

    CAS  Article  PubMed  Google Scholar

  45. Jheon AH, Seidel K, Biehs B, Klein OD (2013) From molecules to mastication: the development and evolution of teeth. Wiley Interdiscip Rev Dev Biol 2:165–182. https://doi.org/10.1002/wdev.63

    Article  PubMed  Google Scholar

  46. Warren JJ, Levy SM, Kanellis MJ (2001) Prevalence of dental fluorosis in the primary dentition. J Public Health Dent 61:87–91. https://doi.org/10.1111/j.1752-7325.2001.tb03371.x

    CAS  Article  PubMed  Google Scholar

  47. Official Journal of the Federation (2011) NOM-218-SSA1–2011. Productos y servicios. Bebidas saborizadas no alcohólicas, sus congelados, productos concentrados para prepararlas y bebidas adicionadas con cafeína. Especificaciones y disposiciones sanitarias. Métodos de prueba. Estados Unidos Mexicanos. Secretaría de Salud. https://www.dof.gob.mx/nota_detalle.php?codigo=5230629&fecha=23/01/2012. Accessed 4 March 2022

  48. Official Journal of the Federation (2015) NOM-201-SSA1–2015. Productos y servicios. Agua y hielo para consumo humano, envasados y a granel. Especificaciones sanitarias. Estados Unidos Mexicanos. Secretaría de Salud. http://dof.gob.mx/nota_detalle.php?codigo=5420977&fecha=22/12/2015#:~:text=1.1%20Esta%20Norma%20establece%20las,o%20importaci%C3%B3n%20de%20dichos%20productos. Accessed 4 March 2022

  49. Avelar RD, Toro MEM, Ignorosa AKR, Ramirez MJ (2018) Childhood obesity in Mexico: social determinants of health and other risk factors. BMJ Case Rep 2018:bcr2017223862. https://doi.org/10.1136/bcr-2017-223862

    Article  Google Scholar

Download references