Abstract

Highlights

  • Antibiotic treatment could reverse high fluoride exposure induced hippocampal spatial memory impairment.
  • High fluoride exposure and antibiotic intake had marked significance on the formation process of ileal microbial community.
  • Keystone species, which has special properties, might be associated with memory dysfunction under high fluoride exposure.

High fluoride exposure was widely demonstrated to be related with brain memory impairment. Since the absorption of F enters the body mainly through the gastrointestinal tract, studying the effects of excessive intake of fluoride on brain memory function in various gut microbiome states might have profound implications for the prevention of fluorosis because growing evidence revealed the significance of the “microbiota-gut-brain” axis (MGBA). In the present study, we aimed to illustrate the potential mechanism of gut microbiota on high fluoride exposure-induced hippocampal lesions and spatial memory dysfunction in mice by the various intestinal microecological environments, which were constructed by antibiotic treatment. Mice fed with normal (CG1 and Exp1 groups) or sodium-fluoride (CG2 and Exp2 groups; 24?mg/kg sodium fluoride per mouse) by gavage administration with or without antibiotic treatments, a combination of metronidazole (1?g/L) and ciprofloxacin (0.2?g/L) in drinking water. Mice gavaged with excessive sodium fluoride alone exhibited reduced weight gain, hippocampal tissue damages, spatial memory levels dysfunction, impaired intestinal permeability, decreased inflammatory cytokines expression and antioxidant capability in the hippocampal and ileal tissues. In contrast, antibiotic intervention significantly reversed these high fluoride exposure-induced hippocampal and ileal changes.16S rRNA high throughput sequencing found that ileal microbiota were dominated by abundant taxa, which is conducive to constructing microbial interaction networks and module communities, and identifying keystone species targeted by high fluoride exposure compared with colonic microbiome. In addition, the microbial community composition and assembly mechanism of ileal microbiome under the effects of antibiotics were suitable for revealing the characteristics of high fluoride environment. In the later analysis, Lactobacillus, Staphylococcus, Muribaculaceae and Robinsoniella were considered as the keystone species targeted by high fluoride-exposed mice based on the analysis of network node properties and niche overlap of ileal microbes. Spearman rank correlation demonstrated that these keystone species had significant effects on hippocampal memory levels and intestinal health, as well as microbial communities functions. Compared to previous researches, this study further revealed intestinal microbial coummunity mediated the underlying mechanism through antibiotic treatment against high fluoride-induce hippocampal spatial memory impairment.

Funding

The present study was supported by Sichuan Science and Technology Program (2025YFHZ0278), Guizhou Provincial Science and Technology Projects (ZK[2024]455), the Science and Technology Fund of Guizhou Provincial Health Committee (No.gzwkj2024-233), the Key Research and Development Projects in Tibet Autonomous Region (2023ZYJM001), the Regional Joint Project of National Natural Science Foundation (U23A20476) and the Tibet Autonomous Region Science and Technology Programme “Open bidding for selecting the best candidates’ Project (XZ202303ZY0013G). The funding bodies provided funding support for the animal purchase and parameter determination.

Appendix A. Supplementary material

Data availability

Data will be made available on request.

References

View PDFView articleView in ScopusGoogle ScholarAntimicrobial Resistance Collaborators, 2022

Antimicrobial Resistance Collaborators
Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis
Lancet, 399 (10325) (2022), pp. 629-655, 10.1016/S0140-6736(21)02724-0

Cao et al., 2023

W. Cao, Z. Zhang, H. Guo, Y. Fu, Z. Gao, T. Nan, Y. Ren, Z. Li
Spatial distribution and controlling mechanisms of high fluoride groundwater in the coastal plain of bohai rim, north china
J. Hydrol., 617 (2023), Article 128952, 10.1016/j.jhydrol.2022.128952

View PDFView articleView in ScopusGoogle ScholarChen et al., 2023

G. Chen, Y. Peng, Y. Huang, M. Xie, Z. Dai, H. Cai, W. Dong, W. Xu, Z. Xie, D. Chen, X. Fan, W. Zhou, X. Kan, T. Yang, C. Chen, Y. Sun, X. Zeng, Z. Liu
Fluoride induced leaky gut and bloom of Erysipelatoclostridium ramosum mediate the exacerbation of obesity in high-fat-diet fed mice
J. Adv. Res., 50 (2023), pp. 35-54, 10.1016/j.jare.2022.10.010

View PDFView articleView in ScopusGoogle ScholarChen et al., 2020

Z. Chen, J. Xiao, H. Liu, K. Yao, X. Hou, Y. Cao, X. Liu
Astaxanthin attenuates oxidative stress and immune impairment in D-galactose-induced aging in rats by activating the Nrf2/Keap1 pathway and suppressing the NF-?B pathway
Food Funct., 11 (9) (2020), pp. 8099-8111, 10.1039/d0fo01663b

View in ScopusGoogle ScholarChoi et al., 2012

A.L. Choi, G. Sun, Y. Zhang, P. Grandjean
Developmental fluoride neurotoxicity: a systematic review and meta-analysis
Environ. Health Perspect., 120 (10) (2012), pp. 1362-1368, 10.1289/ehp.1104912

View in ScopusGoogle ScholarCleary et al., 2017

J.L. Cleary, A.R. Condren, K.E. Zink, L.M. Sanchez
Calling all hosts: bacterial communication in situ
Chem, 2 (2017), pp. 334-358, 10.1016/j.chempr.2017.02.001

View PDFView articleView in ScopusGoogle ScholarD’Argenio and Salvatore, 2015

V. D’Argenio, F. Salvatore
The role of the gut microbiome in the healthy adult status
Clin. Chim. Acta, 451 (2015), pp. 97-102, 10.1016/j.cca.2015.01.003

View PDFView articleView in ScopusGoogle ScholarDas and Basu, 2008

S. Das, A. Basu
Inflammation: a new candidate in modulating adult neurogenesis
J. Neurosci. Res., 86 (6) (2008), pp. 1199-1208, 10.1002/jnr.21585

View in ScopusGoogle ScholarDeacon and Rawlins, 2006

R.M.J. Deacon, J.N.P. Rawlins
T-maze test alternation in the rodent
Nat. Protoc., 1 (1) (2006), pp. 7-12, 10.1038/nprot.2006.2

View in ScopusGoogle ScholarEraslan et al., 2007

G. Eraslan, M. Kanbur, S. Silici
Evaluation of propolis effects on some biochemical parameters in rats treated with sodium fluoride
Pestic. Biochem. Phys., 88 (3) (2007), pp. 273-283, 10.1016/j.pestbp.2007.01.002

View PDFView articleView in ScopusGoogle ScholarEstevinho et al., 2024

M.M. Estevinho, V. Midya, S. Cohen-Mekelburg, K.H. Allin, M. Fumery, S.S. Pinho, J.F. Colombel, M. Agrawal
Emerging role of environmental pollutants in inflammatory bowel disease risk, outcomes and underlying mechanisms
Gut 30 (2024), Article gutjnl-2024-332523, 10.1136/gutjnl-2024-332523

Faber et al., 2016

F. Faber, L. Tran, M.X. Byndloss, C.A. Lopez, E.M. Velazquez, T. Kerrinnes, S.P. Nuccio, T. Wangdi, O. Fiehn, R.M. Tsolis, A.J. Bäumler
Host-mediated sugar oxidation promotes post-antibiotic pathogen expansion
Nature, 534 (7609) (2016), pp. 697-699, 10.1038/nature18597

View in ScopusGoogle ScholarFerreira et al., 2021

M.K.M. Ferreira, W.A.B. Aragão, L.O. Bittencourt, B. Puty, A. Dionizio, M.P.C. Souza, M.A.R. Buzalaf, E.H. de Oliveira, M.E. Crespo-Lopez, R.R. Lima
Fluoride exposure during pregnancy and lactation triggers oxidative stress and molecular changes in hippocampus of offspring rats
Ecotoxicol. Environ. Saf., 208 (2021), Article 111437, 10.1016/j.ecoenv.2020.111437

View PDFView articleView in ScopusGoogle ScholarFilippis et al., 2024

De Filippis, F. Valentino, V. Sequino, G. Borriello, G. Riccardi, M.G. Pierri, B. Cerino, P. Pizzolante, A. Pasolli, E. Esposito, M. Limone, A. Ercolini, D
Exposure to environmental pollutants selects for xenobiotic-degrading functions in the human gut microbiome
Nat. Commun., 15 (1) (2024), p. 4482, 10.1038/s41467-024-48739-7

Frank-Cannon et al., 2009

T.C. Frank-Cannon, L.T. Alto, F.E. McAlpine, M.G. Tansey
Does neuroinflammation fan the flame in neurodegenerative diseases?
Mol. Neurodegener., 4 (2009), p. 47, 10.1186/1750-1326-4-47

View in ScopusGoogle ScholarFröhlich et al., 2016

E.E. Fröhlich, A. Farzi, R. Mayerhofer, F. Reichmann, A. Ja?an, B. Wagner, E. Zinser, N. Bordag, C. Magnes, E. Fröhlich, K. Kashofer, G. Gorkiewicz, P. Holzer
Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication
Brain Behav. Immun., 56 (2016), pp. 140-155, 10.1016/j.bbi.2016.02.020

View PDFView articleView in ScopusGoogle ScholarFu et al., 2019

R. Fu, R. Niu, R. Li, B. Yue, X. Zhang, Q. Cao, J. Wang, Z. Sun
Fluoride-induced alteration in the diversity and composition of bacterial microbiota in mice colon
Biol. Trace Elem. Res., 196 (2) (2019), pp. 537-544, 10.1007/s12011-019-01942-w

Gao et al., 2022

X. Gao, D. Liu, L. Gao, Y. Ouyang, Y. Wen, C. Ai, Y. Chen, C. Zhao
Health benefits of grifola frondosa polysaccharide on intestinal microbiota in type 2 diabetic mice
Food Sci. Hum. Well., 11 (1) (2022), pp. 68-73, 10.1016/j.fshw.2021.07.008

View PDFView articleView in ScopusGoogle ScholarGaulke et al., 2018

C.A. Gaulke, H.K. Arnold, I.R. Humphreys, S.W. Kembel, J.P. O’Dwyer, T.J. Sharpton
Ecophylogenetics clarifies the evolutionary association between mammals and their gut microbiota
MBio, 9 (2018), Article e01348-18, 10.1128/mBio.01348-18

View in ScopusGoogle ScholarGrandjean and Landrigan, 2014

P. Grandjean, P.J. Landrigan
Neurobehavioural effects of developmental toxicity
Lancet Neurol., 13 (3) (2014), pp. 330-338, 10.1016/S1474-4422(13)70278-3

View PDFView articleView in ScopusGoogle ScholarGuida et al., 2018

F. Guida, F. Turco, M. Iannotta, D. De Gregorio, I. Palumbo, G. Sarnelli, A. Furiano, F. Napolitano, S. Boccella, L. Luongo, M. Mazzitelli, A. Usiello, F. De Filippis, F.A. Iannotti, F. Piscitelli, D. Ercolini, V. de Novellis, V. Di Marzo, R. Cuomo, S. Maione
Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice
Brain Behav. Immun., 67 (2018), pp. 230-245, 10.1016/j.bbi.2017.09.001

View PDFView articleView in ScopusGoogle ScholarHossain and Patra, 2020

M. Hossain, P.K. Patra
Hydrogeochemical characterisation and health hazards of fluoride enriched groundwater in diverse aquifer types
Environ. Pollut., 258 (2020), Article 113646, 10.1016/j.envpol.2019.113646

View PDFView articleView in ScopusGoogle ScholarHwang et al., 2015

I. Hwang, Y.J. Park, Y.R. Kim, Y.N. Kim, S. Ka, H.Y. Lee, J.K. Seong, Y.J. Seok, J.B. Kim
Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity
FASEB. J., 29 (6) (2015), pp. 2397-2411, 10.1096/fj.14-265983

View in ScopusGoogle ScholarJovasevic et al., 2024

V. Jovasevic, E.M. Wood, A. Cicvaric, H. Zhang, Z. Petrovic, A. Carboncino, K.K. Parker, T.E. Bassett, M. Moltesen, N. Yamawaki, H. Login, J. Kalucka, F. Sananbenesi, X. Zhang, A. Fischer, J. Radulovic
Formation of memory assemblies through the DNA-sensing TLR9 pathway
Nature, 628 (8006) (2024), pp. 145-153, 10.1038/s41586-024-07220-7

View in ScopusGoogle ScholarLai et al., 2023

Y. Lai, H. Deng, Q. Fang, L. Ma, H. Lei, X. Guo, Y. Chen, C. Song
Water-insoluble polysaccharide extracted from Poria cocos alleviates antibiotic-associated diarrhea based on regulating the gut microbiota in mice
Foods, 12 (16) (2023), p. 3080, 10.3390/foods12163080

View in ScopusGoogle ScholarLankelma et al., 2015

J.M. Lankelma, M. Nieuwdorp, W.M. de Vos, W.J. Wiersinga
The gut microbiota in internal medicine: implications for health and disease
Neth. J. Med, 73 (2) (2015), pp. 61-68, 10.1016/j.tjo.2013.01.002

View in ScopusGoogle ScholarLeitz and Seifert, 2019

D. Leitz, M. Seifert
Fluorine: a paradoxical element. by alain tressaud
16356-16356
Angew. Chem. Int. Ed., 58 (46) (2019), 10.1002/anie.201908981

Li et al., 2022

Q. Li, Y. Gao, H. Li, H. Liu, D. Wang, W. Pan, S. Liu, Y. Xu
Brain structure and synaptic protein expression alterations after antidepressant treatment in a Wistar-Kyoto rat model of depression
J. Affect. Disord., 314 (2022), pp. 293-302, 10.1016/j.jad.2022.07.037

View PDFView articleView in ScopusGoogle ScholarLi et al., 2024

Y. Li, M.H. Zhang, W.J. Mi, L. Ji, Q.S. He, S.L. Xie, C. Xiao, Y.H. Bi
Spatial distribution of groundwater fluoride and arsenic and its related disease in typical drinking endemic regions
Sci. Total Environ., 906 (2024), Article 167716, 10.1016/j.scitotenv.2023.167716

View PDFView articleView in ScopusGoogle ScholarLiu et al., 2024

W.Y. Liu, Y. Yu, J. Zang, Y. Liu, F.R. Li, L. Zhang, R.B. Guo, L. Kong, L.Y. Ma, X.T. Li
Menthol-modified quercetin liposomes with brain-targeting function for the treatment of senescent Alzheimer’s disease
ACS. Chem. Neurosci., 15 (11) (2024), pp. 2283-2295, 10.1021/acschemneuro.4c00109

View articleView in ScopusGoogle ScholarLongo et al., 2023

S. Longo, S. Rizza, M. Federici
Microbiota-gut-brain axis: relationships among the vagus nerve, gut microbiota, obesity, and diabetes
Acta Diabetol., 60 (8) (2023), pp. 1007-1017, 10.1007/s00592-023-02088-x

View in ScopusGoogle ScholarMa et al., 2023

Y. Ma, W. Sun, Z. Ye, L. Liu, M. Li, J. Shang, X. Xu, H. Cao, L. Xu, Y. Liu, X. Kong, G. Song, X.B. Zhang
Oxidative stress biomarker triggered multiplexed tool for auxiliary diagnosis of atherosclerosis
Sci. Adv., 9 (41) (2023), Article eadh1037, 10.1126/sciadv.adh1037

View in ScopusGoogle ScholarMan et al., 2018

L. Man, X. Lv, X.D. Du, G. Yin, X. Zhu, Y. Zhang, J.C. Soares, X.N. Yang, X. Chen, X.Y. Zhang
Cognitive impairments and low BDNF serum levels in first-episode drug-naive patients with schizophrenia
Psychiatry Res., 263 (2018), pp. 1-6, 10.1016/j.psychres.2018.02.034

View PDFView articleView in ScopusGoogle ScholarMarwarha et al., 2017

G. Marwarha, K. Claycombe-Larson, J. Schommer, O. Ghribi
Maternal low-protein diet decreases brain-derived neurotrophic factor expression in the brains of the neonatal rat offspring
J. Nutr. Biochem., 45 (2017), pp. 54-66, 10.1016/j.jnutbio.2017.03.005

View PDFView articleView in ScopusGoogle ScholarMatchado et al., 2021

M.S. Matchado, M. Lauber, S. Reitmeier, T. Kacprowski, J. Baumbach, D. Haller, M. List
Network analysis methods for studying microbial communities: A mini review
Comput. Struct. Biotechnol. J., 19 (2021), pp. 2687-2698, 10.1016/j.csbj.2021.05.001

View PDFView articleView in ScopusGoogle ScholarNiu et al., 2018

R. Niu, H. Chen, R.K. Manthari, Z. Sun, J.M. Wang, J.H. Zhang, J.D. Wang
Effects of fluoride on synapse morphology and myelin damage in mouse hippocampus
Chemosphere, 194 (2018), pp. 628-633, 10.1016/j.chemosphere.2017.12.027

View PDFView articleView in ScopusGoogle ScholarOlsson et al., 2022

L.M. Olsson, F. Boulund, S. Nilsson, M.T. Khan, A. Gummesson, L. Fagerberg, L. Engstrand, R. Perkins, M. Uhlén, G. Bergström, V. Tremaroli, F. Bäckhed
Dynamics of the normal gut microbiota: a longitudinal one-year population study in Sweden
Cell Host Microbe, 30 (5) (2022), pp. 726-739.e3, 10.1016/j.chom.2022.03.002

View PDFView articleView in ScopusGoogle ScholarPedrós-Alió, 2006

C. Pedrós-Alió
Marine microbial diversity: can it be determined?
Trends Microbiol, 14 (6) (2006), pp. 257-263, 10.1016/j.tim.2006.04.007

View PDFView articleView in ScopusGoogle ScholarPeng et al., 2016

C.Y. Peng, H.M. Cai, X.H. Zhu, D.X. Li, Y.Q. Yang, R.Y. Hou, X.C. Wan
Analysis of naturally occurring fluoride in commercial teas and estimation of its daily intake through tea consumption
J. Food Sci., 81 (1) (2016), pp. H235-H239, 10.1111/1750-3841.13180

View in ScopusGoogle ScholarRuan et al., 2021

M. Ruan, Y. Bu, F. Wu, S. Zhang, R. Chen, N. Li, Z. Liu, H. Wan
Chronic consumption of thermally processed palm oil or canola oil modified gut microflora of rats
Food Sci. Hum. Well., 10 (1) (2021), pp. 94-102, 10.1016/j.fshw.2020.06.005

View PDFView articleView in ScopusGoogle ScholarScarpellini et al., 2015

E. Scarpellini, G. Ianiro, F. Attili, C. Bassanelli, De, A. Santis, A. Gasbarrini
The human gut microbiota and virome: potential therapeutic implications
Dig. Liver Dis., 47 (2015), pp. 1007-1012, 10.1016/j.dld.2015.07.008

View PDFView articleView in ScopusGoogle ScholarSgritta et al., 2019

M. Sgritta, S.W. Dooling, S.A. Buffington, E.N. Momin, M.B. Francis, R.A. Britton, M. Costa-Mattioli
Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder
Neuron, 101 (2) (2019), pp. 246-259.e6, 10.1016/j.neuron.2018.11.018

View PDFView articleView in ScopusGoogle ScholarShi et al., 2021

H. Shi, X. Ge, X. Ma, M. Zheng, X. Cui, W. Pan, P. Zheng, X. Yang, P. Zhang, M. Hu, T. Hu, R. Tang, K. Zheng, X.F. Huang, Y. Yu
A fiber-deprived diet causes cognitive impairment and hippocampal microglia-mediated synaptic loss through the gut microbiota and metabolites
Microbiome, 9 (1) (2021), p. 223, 10.1186/s40168-021-01172-0

View in ScopusGoogle ScholarShi et al., 2023

E. Shi, M. Nie, X. Wang, H. Jing, L. Feng, Y. Xu, Z. Zhang, G. Zhang, D. Li, Z. Dai
Polysaccharides affect the utilization of ?-carotene through gut microbiota investigated by in vitro and in vivo experiments
Food Res. Int., 174 (Pt 1) (2023), Article 113592, 10.1016/j.foodres.2023.113592

View PDFView articleView in ScopusGoogle ScholarShi et al., 2020

H. Shi, Q. Shi, B. Grodner, J.S. Lenz, W.R. Zipfel, I.L. Brito, I. De Vlaminck
Highly multiplexed spatial mapping of microbial communities
Nature, 588 (7839) (2020), pp. 676-681, 10.1038/s41586-020-2983-4

View in ScopusGoogle ScholarSpinelli et al., 2020

M. Spinelli, F. Natale, M. Rinaudo, L. Leone, D. Mezzogori, S. Fusco, C. Grassi
Neural stem cell-derived exosomes revert HFD-dependent memory impairment via CREB-BDNF signalling
Int. J. Mol. Sci., 21 (23) (2020), p. 8994, 10.3390/ijms21238994

Su et al., 2021

H. Su, W. Kang, Y. Li, Z. Li
Fluoride and nitrate contamination of groundwater in the Loess Plateau, China: sources and related human health risks
Environ. Pollut., 286 (2021), Article 117287, 10.1016/j.envpol.2021.117287

View PDFView articleView in ScopusGoogle ScholarSuez et al., 2014

J. Suez, T. Korem, D. Zeevi, G. Zilberman-Schapira, C.A. Thaiss, O. Maza, D. Israeli, N. Zmora, S. Gilad, A. Weinberger, Y. Kuperman, A. Harmelin, I. Kolodkin-Gal, H. Shapiro, Z. Halpern, E. Segal, E. Elinav
Artificial sweeteners induce glucose intolerance by altering the gut microbiota
Nature, 514 (7521) (2014), pp. 181-186, 10.1038/nature13793

View in ScopusGoogle ScholarSuez et al., 2018

J. Suez, N. Zmora, G. Zilberman-Schapira, U. Mor, M. Dori-Bachash, S. Bashiardes, M. Zur, D. Regev-Lehavi, Brik Ben-Zeev, R. Federici, S. Horn, M. Cohen, Y. Moor, A.E. Zeevi, D. Korem, T. Kotler, E. Harmelin, A. Itzkovitz, S. Maharshak, N. Shibolet, O. Pevsner-Fischer, M. Shapiro, H. Sharon, I. Halpern, Z. Segal, E. Elinav, E
Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT
Cell, 174 (6) (2018), pp. 1406-1423.e16, 10.1016/j.cell.2018.08.047

View PDFView articleView in ScopusGoogle ScholarSun et al., 2020

N. Sun, X. Ni, H. Wang, J. Xin, Y. Zhao, K. Pan, B. Jing, D. Zeng
Probiotic Lactobacillus johnsonii BS15 prevents memory dysfunction induced by chronic high-fluorine intake through modulating intestinal environment and improving gut development.
Probiotics Antimicrob. Proteins, 12 (4) (2020), pp. 1420-1438, 10.1007/s12602-020-09644-9

View in ScopusGoogle ScholarSun et al., 2024

S. Sun, Z. Qiao, K. Sun, D. Huo
Assembly process and co-occurrence network of microbial community in response to free ammonia gradient distribution
Microbiol. Spectr., 12 (9) (2024), Article e0105124, 10.1128/spectrum.01051-24

Till et al., 2020

C. Till, R. Green, D. Flora, R. Hornung, E.A. Martinez-Mier, M. Blazer, L. Farmus, P. Ayotte, G. Muckle, B. Lanphear
Fluoride exposure from infant formula and child IQ in a Canadian birth cohort
Environ. Int., 134 (2020), Article 105315, 10.1016/j.envint.2019.105315

View PDFView articleView in ScopusGoogle ScholarTurroni et al., 2018

S. Turroni, P. Brigidi, A. Cavalli, M. Candela
Microbiota-host transgenomic metabolism, bioactive molecules from the inside
J. Med. Chem., 61 (2018), pp. 47-61, 10.1021/acs.jmedchem.7b00244

View articleView in ScopusGoogle ScholarVallet et al., 2023

N. Vallet, M. Salmona, J. Malet-Villemagne, M. Bredel, L. Bondeelle, S. Tournier, S. Mercier-Delarue, S. Cassonnet, B. Ingram, R. Peffault de Latour, A. Bergeron, G. Socié, J. Le Goff, P. Lepage, D. Michonneau
Circulating T cell profiles associate with enterotype signatures underlying hematological malignancy relapses
Cell Host Microbe, 31 (8) (2023), pp. 1386-1403.e6, 10.1016/j.chom.2023.06.009

View PDFView articleView in ScopusGoogle ScholarWang et al., 2021

F. Wang, Y. Li, D. Tang, J. Zhao, X. Yang, Y. Liu, F. Peng, L. Shu, J. Wang, Z. He, Y. Liu
Effects of water improvement and defluoridation on fluorosis-endemic areas in China: a meta-analysis
Environ. Pollut., 270 (2021), Article 116227, 10.1016/j.envpol.2020.116227

View PDFView articleView in ScopusGoogle ScholarWang et al., 2020

H.W. Wang, C.Y. Miao, J. Liu, Y. Zhang, S.Q. Zhu, B.H. Zhou
Fluorideinduced rectal barrier damage and microflora disorder in mice
Environ. Sci. Pollut. Res. Int., 27 (7) (2020), pp. 7596-7607, 10.1007/s11356-019-07201-8

View in ScopusGoogle ScholarWang et al., 2024

S. Wang, L. Mu, C. Yu, Y. He, X. Hu, Y. Jiao, Z. Xu, S. You, S.L. Liu, H. Bao
Microbial collaborations and conflicts: unraveling interactions in the gut ecosystem
Gut Microbes, 16 (1) (2024), Article 2296603, 10.1080/19490976.2023.2296603

View in ScopusGoogle ScholarWang et al., 2021

J. Wang, B. Yue, X. Zhang, X. Guo, Z. Sun, R. Niu
Effect of exercise on microglial activation and transcriptome of hippocampus in fluorosis mice
Sci. Total Environ., 760 (2021), Article 143376, 10.1016/j.scitotenv.2020.143376

View PDFView articleView in ScopusGoogle ScholarWang et al., 2024

Z. Wang, Y. Zhao, Y. Hou, G. Tang, R. Zhang, Y. Yang, X. Yan, K. Fan
A thrombin-activated peptide-templated nanozyme for remedying ischemic stroke via thrombolytic and neuroprotective actions
Adv. Mater., 36 (10) (2024), Article e2210144, 10.1002/adma.202210144

Wei et al., 2021

G.Z. Wei, K.A. Martin, P.Y. Xing, R. Agrawal, L. Whiley, T.K. Wood, S. Hejndorf, Y.Z. Ng, J.Z.Y. Low, J. Rossant, R. Nechanitzky, E. Holmes, J.K. Nicholson, E.K. Tan, P.M. Matthews, S. Pettersson
Tryptophan-metabolizing gut microbes regulate adult neurogenesis via the aryl hydrocarbon receptor
Proc. Natl. Acad. Sci., 118 (27) (2021), Article e2021091118, 10.1073/pnas.2021091118

View in ScopusGoogle ScholarXiang et al., 2024

J. Xiang, X.L. Qi, K. Cao, L.Y. Ran, X.X. Zeng, X. Xiao, W. Liao, W.W. He, W. Hong, Y. He, Z.Z. Guan
Exposure to fluoride exacerbates the cognitive deficit of diabetic patients living in areas with endemic fluorosis, as well as of rats with type 2 diabetes induced by streptozotocin via a mechanism that may involve excessive activation of the poly(ADP ribose) polymerase-1/P53 pathway
Sci. Total Environ., 912 (2024), Article 169512, 10.1016/j.scitotenv.2023.169512

View PDFView articleView in ScopusGoogle ScholarXin et al., 2021b

J. Xin, N. Sun, H. Wang, H. Ma, B. Wu, L. Li, Y. Wang, H. Huang, D. Zeng, X. Bai, A. Chen, S. Gong, X. Ni, Y. Bai
Preventive effects of Lactobacillus johnsonii on the renal injury of mice induced by high fluoride exposure: insights from colonic microbiota and co-occurrence network analysis
Ecotoxicol. Environ. Saf., 228 (2021), Article 113006, 10.1016/j.ecoenv.2021.113006

View PDFView articleView in ScopusGoogle ScholarXin et al., 2021a

J. Xin, H. Wang, N. Sun, S. Bughio, D. Zeng, L. Li, Y. Wang, A. Khalique, Y. Zeng, K. Pan, B. Jing, H. Ma, Y. Bai, X. Ni
Probiotic alleviate fluoride-induced memory impairment by reconstructing gut microbiota in mice
Ecotoxicol. Environ. Saf., 215 (2021), Article 112108, 10.1016/j.ecoenv.2021.112108

View PDFView articleView in ScopusGoogle ScholarXin et al., 2020

J. Xin, D. Zeng, H. Wang, N. Sun, A. Khalique, Y. Zhao, L. Wu, K. Pan, B. Jing, X. Ni
Lactobacillus johnsonii BS15 improves intestinal environment against fluoride-induced memory impairment in mice-a study based on the gut-brain axis hypothesis
PeerJ, 8 (2020), Article e10125, 10.7717/peerj.10125

View in ScopusGoogle ScholarXin et al., 2023

J. Xin, B. Zhu, H. Wang, Y. Zhang, N. Sun, X. Cao, L. Zheng, Y. Zhou, J. Fang, B. Jing, K. Pan, Y. Zeng, D. Zeng, F. Li, Y. Xia, P. Xu, X. Ni
Prolonged fluoride exposure induces spatial-memory deficit and hippocampal dysfunction by inhibiting small heat shock protein 22 in mice
J. Hazard. Mater., 456 (2023), Article 131595, 10.1016/j.jhazmat.2023.131595

View PDFView articleView in ScopusGoogle ScholarYan et al., 2018

D. Yan, J. Yao, Y. Liu, X. Zhang, Y. Wang, X. Chen, L. Liu, N. Shi, H. Yan
Tau hyperphosphorylation and P-CREB reduction are involved in acrylamide-induced spatial memory impairment: suppression by curcumin
Brain Behav. Immun., 71 (2018), pp. 66-80, 10.1016/j.bbi.2018.04.014

View PDFView articleView in ScopusGoogle ScholarYao et al., 2023

H. Yao, D. Zhang, H. Yu, H. Yuan, H. Shen, X. Lan, H. Liu, X. Chen, F. Meng, X. Wu, G. Zhang, X. Wang
Gut microbiota regulates chronic ethanol exposure-induced depressive-like behavior through hippocampal NLRP3-mediated neuroinflammation
Mol. Psychiatry, 28 (2) (2023), pp. 919-930, 10.1038/s41380-022-01841-y

View in ScopusGoogle ScholarYu et al., 2018

X. Yu, J. Chen, Y. Li, H. Liu, C. Hou, Q. Zeng, Y. Cui, L. Zhao, P. Li, Z. Zhou, S. Pang, S. Tang, K. Tian, Q. Zhao, L. Dong, C. Xu, X. Zhang, S. Zhang, L. Liu, A. Wang
Threshold effects of moderately excessive fluoride exposure on children’s health: a potential association between dental fluorosis and loss of excellent intelligence
Environ. Int., 118 (2018), pp. 116-124, 10.1016/j.envint.2018.05.042

View PDFView articleView in ScopusGoogle ScholarYu et al., 2024

W. Yu, J. Wang, Y. Xiong, J. Liu, D. Baranenko, Y. Zhang, W. Lu
In vivo absorption, in vitro simulated digestion, and fecal fermentation properties of Imperata cylindrica polysaccharides and their effects on gut microbiota
Food Chem., 461 (2024), Article 140773, 10.1016/j.foodchem.2024.140773

View PDFView articleView in ScopusGoogle ScholarZhang et al., 2025

T. Zhang, M. Chang, X. Hou, M. Yan, S. Zhang, W. Song, Q. Sheng, Y. Yuan, T. Yue
Apple polyphenols prevent patulin-induced intestinal damage by modulating the gut microbiota and metabolism of the gut-liver axis
Food Chem., 463 (Pt 1) (2025), Article 141049, 10.1016/j.foodchem.2024.141049

View PDFView articleView in ScopusGoogle ScholarZhang et al., 2023

X.L. Zhang, L. Chen, J. Yang, S.S. Zhao, S. Jin, N. Ao, J. Yang, H.X. Liu, J. Du
Vitamin D alleviates non-alcoholic fatty liver disease via restoring gut microbiota and metabolism
Front. Microbiol., 14 (2023), Article 1117644, 10.3389/fmicb.2023.1117644

View in ScopusGoogle ScholarZhang et al., 2024

H. Zhang, Y. Feng, Y. Si, C. Lu, J. Wang, S. Wang, L. Li, W. Xie, Z. Yue, J. Yong, S. Dai, L. Zhang, X. Li
Shank3 ameliorates neuronal injury after cerebral ischemia/reperfusion via inhibiting oxidative stress and inflammation
Redox Biol., 69 (2024), Article 102983, 10.1016/j.redox.2023.102983

View PDFView articleView in ScopusGoogle ScholarZhang et al., 2023

X. Zhang, X. Jia, S. Wang, J. Xin, N. Sun, Y. Wang, X. Zhang, Z. Wan, J. Fan, H. Li, Y. Bai, X. Ni, Y. Huang, H. Wang, H. Ma
Disrupted gut microbiota aggravates spatial memory dysfunction induced by high altitude exposure: a link between plateau environment and microbiome-gut-brain axis
Ecotoxicol. Environ. Saf., 259 (2023), Article 115035, 10.1016/j.ecoenv.2023.115035

View PDFView articleView in ScopusGoogle ScholarZhang et al., 2023

W. Zhang, D. Xiao, Q. Mao, H. Xia
Role of neuroinflammation in neurodegeneration development
Signal Transduct. Target Ther., 8 (1) (2023), p. 267, 10.1038/s41392-023-01486-5

Zhang et al., 2024

H. Zhang, X.H. Xie, S.X. Xu, C. Wang, S. Sun, X. Song, R. Li, N. Li, Y. Feng, H. Duan, D. Li, Z. Liu
Oligodendrocyte-derived exosomes-containing SIRT2 ameliorates depressive-like behaviors and restores hippocampal neurogenesis and synaptic plasticity via the AKT/GSK-3? pathway in depressed mice
CNS. Neurosci. Ther., 30 (3) (2024), Article e14661, 10.1111/cns.14661

View in ScopusGoogle ScholarZhang et al., 2023

D. Zhang, X. Xu, X. Wu, Y. Lin, B. Li, Y. Chen, X. Li, J. Shen, S. Lu
Monitoring fluorine levels in tea leaves from major producing areas in china and the relative health risk
J. Food Compos. Anal., 118 (2023), Article 105205, 10.1016/j.jfca.2023.105205

View PDFView articleView in ScopusGoogle ScholarZhang et al., 2023

Z. Zhang, L. Zhao, J. Wu, Y. Pan, G. Zhao, Z. Li, L. Zhang
The Effects of Lactobacillus johnsonii on diseases and its potential applications
Microorganisms, 11 (10) (2023), p. 2580, 10.3390/microorganisms11102580

View in ScopusGoogle ScholarZhao et al., 2024

C. Zhao, G. Chen, Y. Huang, Y. Zhang, S. Li, Z. Jiang, H. Peng, J. Wang, D. Li, R. Hou, C. Peng, X. Wan, H. Cai
Alleviation of fluoride-induced colitis by tea polysaccharides: insights into the role of Limosilactobacillus vaginalis and butyric acid
J. Hazard. Mater., 476 (2024), Article 134858, 10.1016/j.jhazmat.2024.134858

View PDFView articleView in ScopusGoogle ScholarZhao et al., 2020

Q. Zhao, Z. Tian, G. Zhou, Q. Niu, J. Chen, P. Li, L. Dong, T. Xia, S. Zhang, A. Wang
SIRT1-dependent mitochondrial biogenesis supports therapeutic effects of resveratrol against neurodevelopment damage by fluoride
Theranostics, 10 (11) (2020), pp. 4822-4838, 10.7150/thno.42387

View in ScopusGoogle ScholarZheng et al., 2023

C. Zheng, Y. Zhong, W. Zhang, Z. Wang, H. Xiao, W. Zhang, J. Xie, X. Peng, J. Luo, W. Xu
Chlorogenic acid ameliorates post-infectious irritable bowel syndrome by regulating extracellular vesicles of gut microbes
Adv. Sci., 10 (28) (2023), Article e2302798, 10.1002/advs.202302798

Zhou et al., 2021

G. Zhou, Y. Hu, A. Wang, M. Guo, Y. Du, Y. Gong, L. Ding, Z. Feng, X. Hou, K. Xu, F. Yu, Z. Li, Y. Ba
Fluoride stimulates anxiety- and depression-like behaviors associated with SIK2-CRTC1 signaling dysfunction
J. Agric. Food Chem., 69 (45) (2021), pp. 13618-13627, 10.1021/acs.jafc.1c04907

View in ScopusGoogle ScholarZhou and Ning, 2017

J. Zhou, D. Ning
Stochastic community assembly: does it matter in microbial ecology?
e00002-17
Microbiol. Mol. Biol. Rev., 81 (4) (2017), 10.1128/MMBR.00002-17