Abstract

Objective: To investigate the expression and distribution of the downstream substrate of extracellular regulated protein kinase(ERK1/2) pathway, ternary complex factor phospho-Elk-1, in rat brains with chronic fluorosis, and reveal the mechanism of the impaired learning and memory ability caused by chronic fluorosis.

Methods: Seventy-two SD rats, weighing 100 – 120 g, were randomly divided into 3 groups, 24 in each group (half male and half female). The rats in control group were fed with tap water (fluoride < 0.5 mg/L); low- and high-dose fluoride groups were fed with tap water with different concentrations of NaF (5.0,50.0 mg/L F-, respectively). After 6 months, body weight was weighed, dental fluorosis was determined by observation and urinary fluoride and bone fluoride were detected by fluorine ion-selective electrode; the learning ability of rats was measured by navigation test of Morris water maze, and memory ability by spatial probe test in Morris water maze; the expression and distribution of phospho-Elk-1 in different brain regions were detected by immunohistochemistry method.

Results: In low- and high-fluoride groups, the body weight of rat [(449.2 ± 77.1), (312.8 ± 89.7)g] was significantly decreased than that of control [(635.5 ± 76.2 )g, all P< 0.05], the varying degrees of dental fluorosis were observed (x2 = 7.83, P<0.05), urinary fluoride [(2.56 ±0.91),(5.73 ±3.14)mg/L] and bone fluoride [(709.2 ± 37.4) ,(1306.3 ± 102.4) mg/kg] were significantly higher than those in controls[(0.92 ± 0.30)mg/L,(348.5 ± 89.2)mg/kg, all P< 0.05]. The escape latency of low- and high-fluoride groups [ (7.4 ± 4.1), (12.2 ± 5.7)s] was longer than that of control [(4.8 ± 2.7 )s, all P < 0.05] and the escape latency in high-fluoride group was significantly longer than that in other groups (all P < 0.05); in spatial probe test, the time of first crossing platform was longer in rats with fluorosis [(4.18 ± 1.10),(5.89 ± 0.56)s] as compared to control[(1.17 ± 0.75)s, all P< 0.05]. Expressions of phospho-Elk-1 in the hippocampus CA1 (167.4 ± 8.3,163.2 ± 9.4), CA2(175.7 ± 5.0,183.3 ± 4.2), CA3(165.2 ± 11.6,162.9 ± 4.4), CA4(168.7± 6.9,169.5 ±5.3), fascia dentate (185.2 ±4.0,193.1 ±6.1) and caudate putamen( 181.4 ± 3.8, 179.8 ± 5.5) in low- and high-fluoride groups were higher than those of controls(142.4 ± 8.1,144.9 ± 8.4,143.6 ± 5.8, 116.8 ± 9.1,140.2 ± 7.8,163.1 ± 13.1, all P< 0.05).

Conclusion: Chronic fluorosis can cause increased expression of phospho-Elk-1 in the hippocampus and caudate putamen region of rat brains, which might be related to the mechanisms of decreased learning and memory ability of rats overexposed to fluoride.