References Zhou G, Yang L, Luo C, Liu H, Li P, Cui Y, Liu L, Yu X, Zeng Q, Chen J, Zhao Q, Dong L, Niu Q, Zhang S, Wang A (2019) Low-to-moderate fluoride exposure, relative mitochondrial DNA levels, and dental fluorosis in Chinese children. Environ Int 127:70–77. https://doi.org/10.1016/j.envint.2019.03.033 CAS  Article  Google Scholar Sreemanta P, Depanwita S (2017) The genetic influence in fluorosis. Environ Toxicol Phar 56:157–162. https://doi.org/10.1016/j.etap.

Abstract

Due to the implementation of water improvement and fluoride reduction plans supported by central and local governments in recent years, areas with high fluoride exposure are being gradually decreased. Therefore, it is of practical importance to study the effect of low fluoride on human health. Epidemiologic investigations and in vivo and in vitro studies based on low fluoride have also confirmed that fluoride not only causes skeletal damage, such as dental fluorosis, but also causes non-skeletal damage involving the cardiovascular system, nervous system, hepatic and renal function, reproductive system, thyroid function, blood glucose homeostasis, and the immune system. This article summarizes the effects of low fluoride on human and animal skeletal and non-skeletal systems. A preliminary exploration of corresponding mechanisms that will help to fully understand the harm of low fluoride on human health was undertaken to provide the basis for establishing new water fluoride standards and help to implement individual guidance.


*Original abstract online at https://link.springer.com/article/10.1007/s12011-022-03302-7

Excerpt:

References

  1. Zhou G, Yang L, Luo C, Liu H, Li P, Cui Y, Liu L, Yu X, Zeng Q, Chen J, Zhao Q, Dong L, Niu Q, Zhang S, Wang A (2019) Low-to-moderate fluoride exposure, relative mitochondrial DNA levels, and dental fluorosis in Chinese children. Environ Int 127:70–77. https://doi.org/10.1016/j.envint.2019.03.033

    CAS  Article  Google Scholar

  2. Sreemanta P, Depanwita S (2017) The genetic influence in fluorosis. Environ Toxicol Phar 56:157–162. https://doi.org/10.1016/j.etap.2017.09.008

    CAS  Article  Google Scholar

  3. Helte E, Donat Vargas C, Kippler M, Wolk A, Michaëlsson K, åkesson A (2021) Fluoride in drinking water, diet, and urine in relation to bone mineral density and fracture incidence in postmenopausal women. Environ Health Persp 129(4) https://doi.org/10.1289/EHP7404

  4. Muhammad S, Malik Naseem R, Atif K (2020) Fluorosis and cognitive development among children (6–14 years of age) in the endemic areas of the world: a review and critical analysis. Environ Sci Pollut R 27(3):2566–2579. https://doi.org/10.1007/s11356-019-06938-6

    CAS  Article  Google Scholar

  5. Mar B (2018) Review of fluoride intake and appropriateness of current guidelines. Adv Dent Res 29(2):157–166. https://doi.org/10.1177/0022034517750850

    Article  Google Scholar

  6. Solanki YS, Agarwal M, Gupta AB, Gupta S, Shukla P (2022) Fluoride occurrences, health problems, detection, and remediation methods for drinking water: a comprehensive review. Sci Total Environ 807:150601. https://doi.org/10.1016/j.scitotenv.2021.150601

    CAS  Article  Google Scholar

  7. Perumal E, Paul V, Govindarajan V, Panneerselvam L (2013) A brief review on experimental fluorosis. Toxicol Lett 223(2):236–251. https://doi.org/10.1016/j.toxlet.2013.09.005

    CAS  Article  Google Scholar

  8. Wang M, Liu L, Li H, Li Y, Liu H, Hou C, Zeng Q, Li P, Zhao Q, Dong L, Zhou G, Yu X, Liu L, Guan Q, Zhang S, Wang A (2020) Thyroid function, intelligence, and low-moderate fluoride exposure among Chinese school-age children. Environ Int 134:105229. https://doi.org/10.1016/j.envint.2019.105229

    CAS  Article  Google Scholar

  9. Kido T, Tsunoda M, Sugaya C, Hano H, Yanagisawa H (2017) Fluoride potentiates tubulointerstitial nephropathy caused by unilateral ureteral obstruction. Toxicology 392:106–118. https://doi.org/10.1016/j.tox.2017.10.003

    CAS  Article  Google Scholar

  10. Chu Y, Gao Y, Yang Y, Liu Y, Guo N, Wang L, Huang W, Wu L, Sun D, Gu W (2020) beta-catenin mediates fluoride-induced aberrant osteoblasts activity and osteogenesis. Environ Pollut 265(Pt A):114734. https://doi.org/10.1016/j.envpol.2020.114734

    CAS  Article  Google Scholar

  11. Johnston NR, Strobel SA (2020) Principles of fluoride toxicity and the cellular response: a review. Arch Toxicol 94(4):1051–1069. https://doi.org/10.1007/s00204-020-02687-5

    CAS  Article  Google Scholar

  12. Wang L, Zhu Y, Wang D (2016) High-dose fluoride induces apoptosis and inhibits ameloblastin secretion in primary rat ameloblast. Biol Trace Elem Res 174(2):402–409. https://doi.org/10.1007/s12011-016-0738-8

    CAS  Article  Google Scholar

  13. Yang T, Zhang Y, Zheng D, Hao Y, Snead ML, Duan X (2015) High-fluoride promoted phagocytosis-induced apoptosis in a matured ameloblast-like cell line. Arch Oral Biol 60(1):84–90. https://doi.org/10.1016/j.archoralbio.2014.09.001

    CAS  Article  Google Scholar

  14. Lobo JGVM, Leite AL, Pereira HABS, Fernandes MS, Peres-Buzalaf C, Sumida DH, Rigalli A, Buzalaf MAR (2015) Low-level fluoride exposure increases insulin sensitivity in experimental diabetes. J Dent Res 94(7):990–997. https://doi.org/10.1177/0022034515581186

    CAS  Article  Google Scholar

  15. Pereira HABS, Dionizio AS, Fernandes MS, Araujo TT, Cestari TM, Buzalaf CP, Iano FG, Buzalaf MAR (2016) Fluoride intensifies hypercaloric diet-induced ER oxidative stress and alters lipid metabolism. PLoS ONE 11(6):e158121. https://doi.org/10.1371/journal.pone.0158121

    CAS  Article  Google Scholar

  16. Gutowska I, Baranowska-Bosiacka I, Goschorska M, Kolasa A, Bukomska A, Jakubczyk K, Dec K, Chlubek D (2015) Fluoride as a factor initiating and potentiating inflammation in THP1 differentiated monocytes/macrophages. Toxicol In Vitro 29(7):1661–1668. https://doi.org/10.1016/j.tiv.2015.06.024

    CAS  Article  Google Scholar

  17. Buzalaf Rabelo MA, Levy Marc S (2011) Fluoride intake of children: considerations for dental caries and dental fluorosis. Monogr Oral Sci 22:1

    Article  Google Scholar

  18. Mejare I (2018) Current guidance for fluoride intake: is it appropriate? Adv Dent Res 29(2):167–176. https://doi.org/10.1177/0022034517750589

    CAS  Article  Google Scholar

  19. Ranasinghe N, Kruger E, Tennant M (2019) Spatial distribution of groundwater fluoride levels and population at risk for dental caries and dental fluorosis in Sri Lanka. Int Dent J 69(4):295–302. https://doi.org/10.1111/idj.12476

    Article  Google Scholar

  20. Sukhabogi JR, Parthasarathi P, Anjum S, Shekar B, Padma C, Rani A (2014) Dental fluorosis and dental caries prevalence among 12 and 15-year-old school children in Nalgonda District, Andhra Pradesh. India Ann Med Health Sci Res 4(Suppl 3):S245–S252. https://doi.org/10.4103/2141-9248.141967

    CAS  Article  Google Scholar

  21. Dong H, Yang X, Zhang S, Wang X, Guo C, Zhang X, Ma J, Niu P, Chen T (2021) Associations of low level of fluoride exposure with dental fluorosis among U.S. children and adolescents, NHANES 2015–2016. Ecotox Environ Safe 221:112439. https://doi.org/10.1016/j.ecoenv.2021.112439

    CAS  Article  Google Scholar

  22. Irigoyen-Camacho ME, García Pérez A, Mejía González A, Huizar Alvarez R (2016) Nutritional status and dental fluorosis among schoolchildren in communities with different drinking water fluoride concentrations in a central region in Mexico. Sci Total Environ 541:512–519. https://doi.org/10.1016/j.scitotenv.2015.09.085

    CAS  Article  Google Scholar

  23. Schwendicke F, Doost F, Hopfenmuller W, Meyer-Lueckel H, Paris S (2015) Dental caries, fluorosis, and oral health behavior of children from Herat. Afghanistan Community Dent Oral Epidemiol 43(6):521–531. https://doi.org/10.1111/cdoe.12177

    Article  Google Scholar

  24. Wang S, Zhao Q, Li G, Wang M, Liu H, Yu X, Chen J, Li P, Dong L, Zhou G, Cui Y, Wang M, Liu L, Wang A (2021) The cholinergic system, intelligence, and dental fluorosis in school-aged children with low-to-moderate fluoride exposure. Ecotoxicol Environ Saf 228:112959. https://doi.org/10.1016/j.ecoenv.2021.112959

    CAS  Article  Google Scholar

  25. Narbutaite J, Vehkalahti MM, Milciuviene S (2007) Dental fluorosis and dental caries among 12-yr-old children from high- and low-fluoride areas in Lithuania. Eur J Oral Sci 115(2):137–142. https://doi.org/10.1111/j.1600-0722.2007.00434.x

    CAS  Article  Google Scholar

  26. Yu X, Chen J, Li Y, Liu H, Hou C, Zeng Q, Cui Y, Zhao L, Li P, Zhou Z, Pang S, Tang S, Tian K, Zhao Q, Dong L, Xu C, Zhang X, Zhang S, Liu L, Wang A (2018) Threshold effects of moderately excessive fluoride exposure on children’s health: a potential association between dental fluorosis and loss of excellent intelligence. Environ Int 118:116–124. https://doi.org/10.1016/j.envint.2018.05.042

    CAS  Article  Google Scholar

  27. Lou DD, Guan ZZ, Liu YJ, Liu YF, Zhang KL, Pan JG, Pei JJ (2013) The influence of chronic fluorosis on mitochondrial dynamics morphology and distribution in cortical neurons of the rat brain. Arch Toxicol 87(3):449–457. https://doi.org/10.1007/s00204-012-0942-z

    CAS  Article  Google Scholar

  28. Pramanik S, Saha D (2017) The genetic influence in fluorosis. Environ Toxicol Pharmacol 56:157–162. https://doi.org/10.1016/j.etap.2017.09.008

    CAS  Article  Google Scholar

  29. Charone S, Kuchler EC, Leite AL, Silva FM, Taioqui PV, Martini T, Brondino BM, Magalhaes AC, Dionisio TJ, F SC, Buzalaf M, (2019) Analysis of polymorphisms in genes differentially expressed in the enamel of mice with different genetic susceptibilities to dental fluorosis. Caries Res 53(2):228–233. https://doi.org/10.1159/000491554

    CAS  Article  Google Scholar

  30. Dalledone M, Cunha AS, Ramazzotto LA, Pecharki GD, Nelson-Filho P, Scariot R, Trevilatto PC, Vieira AR, Kuchler EC, Brancher JA (2019) Estrogen receptor gene is associated with dental fluorosis in Brazilian children. Clin Oral Investig 23(9):3565–3570. https://doi.org/10.1007/s00784-018-2778-2

    CAS  Article  Google Scholar

  31. James P, Harding M, Beecher T, Browne D, Cronin M, Guiney H, Mullane O, D, Whelton H, (2021) Impact of reducing water fluoride on dental caries and fluorosis. J Dent Res 100(5):507–514. https://doi.org/10.1177/0022034520978777

    CAS  Article  Google Scholar

  32. Barberio MA, Hosein SF, Quiñonez C, Mclaren L (2017) Fluoride exposure and indicators of thyroid functioning in the Canadian population: implications for community water fluoridation. J Epidemiol Commun H 71(10):1019–1025. https://doi.org/10.1136/jech-2017-209129

    Article  Google Scholar

  33. Mohd Nor NA, Chadwick BL, Farnell DJJ, Chestnutt IG (2018) The impact of a reduction in fluoride concentration in the Malaysian water supply on the prevalence of fluorosis and dental caries. Community Dent Oral 46(5):492–499. https://doi.org/10.1111/cdoe.12407

    Article  Google Scholar

  34. Wei W, Pang S, Sun D (2019) The pathogenesis of endemic fluorosis: research progress in the last 5 years. J Cell Mol Med 23(4):2333–2342. https://doi.org/10.1111/jcmm.14185

    CAS  Article  Google Scholar

  35. Liu Y, Yang Y, Wei Y, Liu X, Li B, Chu Y, Huang W, Wang L, Lou Q, Guo N, Wu L, Wang J, Zhang M, Yin F, Fan C, Su M, Zhang Z, Zhang X, Gao Y, Sun D (2020) sKlotho is associated with the severity of brick tea-type skeletal fluorosis in China. Sci Total Environ 744:140749. https://doi.org/10.1016/j.scitotenv.2020.140749

    CAS  Article  Google Scholar

  36. Gao M, Sun L, Xu K, Zhang L, Zhang Y, He T, Sun R, Huang H, Zhu J, Zhang Y, Zhou G, Ba Y (2020) Association between low-to-moderate fluoride exposure and bone mineral density in Chinese adults: non-negligible role of RUNX2 promoter methylation. Ecotox Environ Safe 203:111031. https://doi.org/10.1016/j.ecoenv.2020.111031

    CAS  Article  Google Scholar

  37. Chen S, Li B, Lin S, Huang Y, Zhao X, Zhang M, Xia Y, Fang X, Wang J, Hwang SA, Yu S (2013) Change of urinary fluoride and bone metabolism indicators in the endemic fluorosis areas of southern China after supplying low fluoride public water. BMC Public Health 13:156. https://doi.org/10.1186/1471-2458-13-156

    CAS  Article  Google Scholar

  38. Song Y, Tan H, Liu K, Zhang Y, Liu Y, Lu C, Yu D, Tu J, Cui C (2011) Effect of fluoride exposure on bone metabolism indicators ALP, BALP, and BGP. Environ Health Prev 16(3):158–163. https://doi.org/10.1007/s12199-010-0181-y

    CAS  Article  Google Scholar

  39. Miltonprabu S, Thangapandiyan S (2015) Epigallocatechin gallate potentially attenuates fluoride induced oxidative stress mediated cardiotoxicity and dyslipidemia in rats. J Trace Elem Med Bio 29:321–335. https://doi.org/10.1016/j.jtemb.2014.08.015

    CAS  Article  Google Scholar

  40. Scarpa M, Vianello F, Rigo A, Viglino P, Bracco F, Battistin L (1993) Uptake and life time of fluoride ion in rats by 19F-NMR. Magn Reson Imaging 11(5):697–703. https://doi.org/10.1016/0730-725x(93)90012-3

    CAS  Article  Google Scholar

  41. Karademir S, Akcam M, Kuybulu AE, Olgar S, Oktem F (2011) Effects of fluorosis on QT dispersion, heart rate variability and echocardiographic parameters in children. Anadolu Kardiyoloji Dergisi/The Anatolian Journal of Cardiology. https://doi.org/10.5152/akd.2011.038

    Article  Google Scholar

  42. Adali MK, Varol E, Aksoy F, Icli A, Ersoy IH, Ozaydin M, Erdogan D, Dogan A (2013) Impaired heart rate recovery in patients with endemic fluorosis. Biol Trace Elem Res 152(3):310–315. https://doi.org/10.1007/s12011-013-9627-6

    CAS  Article  Google Scholar

  43. Davoudi M, Barjasteh-Askari F, Sarmadi M, Ghorbani M, Yaseri M, Bazrafshan E, Mahvi AH, Moohebati M (2021) Relationship of fluoride in drinking water with blood pressure and essential hypertension prevalence: a systematic review and meta-analysis. Int Arch Occ Env Hea 94(6):1137–1146. https://doi.org/10.1007/s00420-021-01714-x

    CAS  Article  Google Scholar

  44. Yousefi M, Yaseri M, Nabizadeh R, Hooshmand E, Jalilzadeh M, Mahvi AH, Mohammadi AA (2018) Association of hypertension, body mass index, and waist circumference with fluoride intake; water drinking in residents of fluoride endemic areas. Iran Biol Trace Elem Res 185(2):282–288. https://doi.org/10.1007/s12011-018-1269-2

    CAS  Article  Google Scholar

  45. Sun L, Gao Y, Liu H, Zhang W, Ding Y, Li B, Li M, Sun D (2013) An assessment of the relationship between excess fluoride intake from drinking water and essential hypertension in adults residing in fluoride endemic areas. Sci Total Environ 443:864–869. https://doi.org/10.1016/j.scitotenv.2012.11.021

    CAS  Article  Google Scholar

  46. Cicek E, Aydin G, Akdogan M, Okutan H (2005) Effects of chronic ingestion of sodium fluoride on myocardium in a second generation of rats. Hum Exp Toxicol 24(2):79–87. https://doi.org/10.1191/0960327105ht505oa

    CAS  Article  Google Scholar

  47. Donmez N, Cinar A (2003) Effects of chronic fluorosis on electrocardiogram in sheep. Biol Trace Elem Res 92(2):115–122. https://doi.org/10.1385/BTER:92:2:115

    CAS  Article  Google Scholar

  48. Yan X, Dong N, Hao X, Xing Y, Tian X, Feng J, Xie J, Lv Y, Wei C, Gao Y, Qiu Y, Wang T (2019) Comparative transcriptomics reveals the role of the toll-like receptor signaling pathway in fluoride-induced cardiotoxicity. J Agr Food Chem 67(17):5033–5042. https://doi.org/10.1021/acs.jafc.9b00312

    CAS  Article  Google Scholar

  49. Xie J, Yan X, Xu G, Tian X, Dong N, Feng J, Liu P, Li M, Zhao Y, Wei C, Lyu Y, Ma G, Song G, Wang T, Yan X (2020) ITRAQ-based proteomics reveals the potential mechanism of fluoride-induced myocardial contraction function damage. Ecotoxicol Environ Saf 197:110605. https://doi.org/10.1016/j.ecoenv.2020.110605

    CAS  Article  Google Scholar

  50. Dec K, Bukomska A, Maciejewska D, Jakubczyk K, Baranowska-Bosiacka I, Chlubek D, W?sik A, Gutowska I (2017) The influence of fluorine on the disturbances of homeostasis in the central nervous system. Biol Trace Elem Res 177(2):224–234. https://doi.org/10.1007/s12011-016-0871-4

    CAS  Article  Google Scholar

  51. Pereira M, Dombrowski PA, Losso EM, Chioca LR, Da Cunha C, Andreatini R (2009) Memory impairment induced by sodium fluoride is associated with changes in brain monoamine levels. Neurotox Res 19(1):55–62. https://doi.org/10.1007/s12640-009-9139-5

    CAS  Article  Google Scholar

  52. Zhou G, Tang S, Yang L, Niu Q, Chen J, Xia T, Wang S, Wang M, Zhao Q, Liu L, Li P, Dong L, Yang K, Zhang S, Wang A (2019) Effects of long-term fluoride exposure on cognitive ability and the underlying mechanisms: role of autophagy and its association with apoptosis. Toxicol Appl Pharmacol 378:114608. https://doi.org/10.1016/j.taap.2019.114608

    CAS  Article  Google Scholar

  53. Basha PM, Sujitha NS (2012) Combined impact of exercise and temperature in learning and memory performance of fluoride toxicated rats. Biol Trace Elem Res 150(1–3):306–313. https://doi.org/10.1007/s12011-012-9489-3

    CAS  Article  Google Scholar

  54. Yuan J, Li Q, Niu R, Wang J (2019) Fluoride exposure decreased learning ability and the expressions of the insulin receptor in male mouse hippocampus and olfactory bulb. Chemosphere 224:71–76. https://doi.org/10.1016/j.chemosphere.2019.02.113

    CAS  Article  Google Scholar

  55. Agalakova NI, Nadei OV (2020) Inorganic fluoride and functions of brain. Crit Rev Toxicol 50(1):28–46. https://doi.org/10.1080/10408444.2020.1722061

    CAS  Article  Google Scholar

  56. Niu R, Zhang Y, Liu S, Liu F, Sun Z, Wang J (2015) Proteome alterations in cortex of mice exposed to fluoride and lead. Biol Trace Elem Res 164(1):99–105. https://doi.org/10.1007/s12011-014-0205-3

    CAS  Article  Google Scholar

  57. Yani SI, Seweng A, Mallongi A, Nur R, Abdullah MT, Salmah U, Sirajuddin S, Basir-Cyio M, Mahfudz AA (2021) The influence of fluoride in drinking water on the incidence of fluorosis and intelligence of elementary school students in Palu City. Gac Sanit 35(Suppl 2):S159–S163. https://doi.org/10.1016/j.gaceta.2021.07.010

    Article  Google Scholar

  58. Bukomska A, Baranowska-Bosiacka I, Dec K, Pilutin A, Tarnowski M, Jakubczyk K, Zwiere??o W, Skórka-Majewicz M, Chlubek D, Gutowska I (2021) Changes in gene and protein expression of metalloproteinase-2 and -9 and their inhibitors TIMP2 and TIMP3 in different parts of fluoride-exposed rat brain. Int J Mol Sci 22(1):391. https://doi.org/10.3390/ijms22010391

    CAS  Article  Google Scholar

  59. Zhao Q, Niu Q, Chen J, Xia T, Zhou G, Li P, Dong L, Xu C, Tian Z, Luo C, Liu L, Zhang S, Wang A (2019) Roles of mitochondrial fission inhibition in developmental fluoride neurotoxicity: mechanisms of action in vitro and associations with cognition in rats and children. Arch Toxicol 93(3):709–726. https://doi.org/10.1007/s00204-019-02390-0

    CAS  Article  Google Scholar

  60. Valdez Jiménez L, López Guzmán OD, Cervantes Flores M, Costilla-Salazar R, Calderón Hernández J, Alcaraz Contreras Y, Rocha-Amador DO (2017) In utero exposure to fluoride and cognitive development delay in infants. Neurotoxicology 59:65–70. https://doi.org/10.1016/j.neuro.2016.12.011

    CAS  Article  Google Scholar

  61. Paul V, Ekambaram P, Jayakumar AR (1998) Effects of sodium fluoride on locomotor behavior and a few biochemical parameters in rats. Environ Toxicol Phar 6(3):187–191. https://doi.org/10.1016/S1382-6689(98)00033-7

    CAS  Article  Google Scholar

  62. Malin AJ, Bose S, Busgang SA, Gennings C, Thorpy M, Wright RO, Wright RJ, Arora M (2019) Fluoride exposure and sleep patterns among older adolescents in the United States: a cross-sectional study of NHANES 2015–2016. Environ Health-Glob 18(1):106–109. https://doi.org/10.1186/s12940-019-0546-7

    CAS  Article  Google Scholar

  63. Niu Q, Chen J, Xia T, Li P, Zhou G, Xu C, Zhao Q, Dong L, Zhang S, Wang A (2018) Excessive ER stress and the resulting autophagic flux dysfunction contribute to fluoride-induced neurotoxicity. Environ Pollut 233:889–899. https://doi.org/10.1016/j.envpol.2017.09.015

    CAS  Article  Google Scholar

  64. Chouhan S, Lomash V, Flora SJ (2010) Fluoride-induced changes in haem biosynthesis pathway, neurological variables and tissue histopathology of rats. J Appl Toxicol 30(1):63–73. https://doi.org/10.1002/jat.1474

    CAS  Article  Google Scholar

  65. Reddy YP, Tiwari S, Tomar LK, Desai N, Sharma VK (2021) Fluoride-induced expression of neuroinflammatory markers and neurophysiological regulation in the brain of Wistar rat model. Biol Trace Elem Res 199(7):2621–2626. https://doi.org/10.1007/s12011-020-02362-x

    CAS  Article  Google Scholar

  66. Reddy YP, Tiwari SK, Shaik AP, Alsaeed A, Sultana A, Reddy PK (2013) Effect of sodium fluoride on neuroimmunological parameters, oxidative stress and antioxidative defenses. Toxicol Mech Method 24(1):31–36. https://doi.org/10.3109/15376516.2013.843224

    CAS  Article  Google Scholar

  67. Ca M, G Z, R G, Ss B, R W, A B, C P, Gj H, (2018) An evaluation of neurotoxicity following fluoride exposure from gestational through adult ages in Long-Evans hooded rats. Neurotox Res 34(4):781–798. https://doi.org/10.1007/s12640-018-9870-x

    CAS  Article  Google Scholar

  68. Xiong X, Liu J, He W, Xia T, He P, Chen X, Yang K, Wang A (2007) Dose–effect relationship between drinking water fluoride levels and damage to liver and kidney functions in children. Environ Res 103(1):112–116. https://doi.org/10.1016/j.envres.2006.05.008

    CAS  Article  Google Scholar

  69. He H, Wang H, Han M, Jiao Y, Ma C, Zhang H, Zhou Z (2014) Study on changes of clinical indicators and key proteins from fluoride exposure. Biol Trace Elem Res 160(1):73–78. https://doi.org/10.1007/s12011-014-0034-4

    CAS  Article  Google Scholar

  70. Usuda K, Ueno T, Ito Y, Dote T, Yokoyama H, Kono K, Tamaki J (2016) Risk assessment study of fluoride salts: probability-impact matrix of renal and hepatic toxicity markers. Biol Trace Elem Res 173(1):154–160. https://doi.org/10.1007/s12011-016-0644-0

    CAS  Article  Google Scholar

  71. Caglayan C, Kandemir FM, Darendelio?lu E, Küçükler S, Ayna A (2021) Hesperidin protects liver and kidney against sodium fluoride-induced toxicity through anti-apoptotic and anti-autophagic mechanisms. Life Sci 281:119730. https://doi.org/10.1016/j.lfs.2021.119730

    CAS  Article  Google Scholar

  72. Malin AJ, Lesseur C, Busgang SA, Curtin P, Wright RO, Sanders AP (2019) Fluoride exposure and kidney and liver function among adolescents in the United States: NHANES, 2013–2016. Environ Int 132:105012. https://doi.org/10.1016/j.envint.2019.105012

    CAS  Article  Google Scholar

  73. Chattopadhyay A, Podder S, Agarwal S, Bhattacharya S (2011) Fluoride-induced histopathology and synthesis of stress protein in liver and kidney of mice. Arch Toxicol 85(4):327–335. https://doi.org/10.1007/s00204-010-0588-7

    CAS  Article  Google Scholar

  74. M J, Sinha S, Ghosh M, Mukherjee A (2013) Evaluation of multi-endpoint assay to detect genotoxicity and oxidative stress in mice exposed to sodium fluoride. Mutat Res/Genet Toxicol Environ Mutagen 751(1):59–65. https://doi.org/10.1016/j.mrgentox.2012.11.006

    CAS  Article  Google Scholar

  75. Buzalaf Mar WG (2011) Fluoride metabolism. Monogr Oral Sci 20:20–36. https://doi.org/10.1159/000325107

    Article  Google Scholar

  76. Saylor C, Malin AJ, Tamayo-Ortiz M, Cantoral A, Amarasiriwardena C, Estrada-Gutierrez G, Tolentino MC, Pantic I, Wright RO, Tellez-Rojo MM, Sanders AP (2022) Early childhood fluoride exposure and preadolescent kidney function. Environ Res 204:112014. https://doi.org/10.1016/j.envres.2021.112014

    CAS  Article  Google Scholar

  77. Cardenas-Gonzalez MC, Del RL, Barrera-Chimal J, Jacobo-Estrada T, Lopez-Bayghen E, Bobadilla NA, Barbier O (2013) Proximal renal tubular injury in rats sub-chronically exposed to low fluoride concentrations. Toxicol Appl Pharmacol 272(3):888–894. https://doi.org/10.1016/j.taap.2013.07.026

    CAS  Article  Google Scholar

  78. Kobayashi CA, Leite AL, Silva TL, Santos LD, Nogueira FC, Oliveira RC, Palma MS, Domont GB, Buzalaf MA (2009) Proteomic analysis of kidney in rats chronically exposed to fluoride. Chem Biol Interact 180(2):305–311. https://doi.org/10.1016/j.cbi.2009.03.009

    CAS  Article  Google Scholar

  79. Liu Y, Téllez-Rojo M, Hu H, Sánchez BN, Martinez-Mier EA, Basu N, Mercado-García A, Solano-González M, Peterson KE (2019) Fluoride exposure and pubertal development in children living in Mexico City. Environ Health-Glob 18(1) https://doi.org/10.1186/s12940-019-0465-7

  80. Duan L, Zhu J, Wang K, Zhou G, Yang Y, Cui L, Huang H, Cheng X, Ba Y (2016) Does fluoride affect serum testosterone and androgen binding protein with age-specificity? A population-based cross-sectional study in Chinese male farmers. Biol Trace Elem Res 174(2):294–299. https://doi.org/10.1007/s12011-016-0726-z

    CAS  Article  Google Scholar

  81. Pushpalatha T, Srinivas M, Sreenivasula Reddy P (2005) Exposure to high fluoride concentration in drinking water will affect spermatogenesis and steroidogenesis in male albino rats. Biometals 18(3):207–212. https://doi.org/10.1007/s10534-005-0336-2

    CAS  Article  Google Scholar

  82. Kumar N, Sood S, Arora B, Singh M, Beena (2010) Effect of duration of fluoride exposure on the reproductive system in male rabbits. J Hum Reprod Sci 3(3):148–152. https://doi.org/10.4103/0974-1208.74159

    Article  Google Scholar

  83. Zhao WP, Wang HW, Liu J, Tan PP, Luo XL, Zhu SQ, Chen XL, Zhou BH (2018) Positive PCNA and Ki-67 expression in the testis correlates with spermatogenesis dysfunction in fluoride-treated rats. Biol Trace Elem Res 186(2):489–497. https://doi.org/10.1007/s12011-018-1338-6

    CAS  Article  Google Scholar

  84. Han Y, Yu Y, Liang C, Shi Y, Zhu Y, Zheng H, Wang J, Zhang J (2019) Fluoride-induced unrestored arrest during haploid period of spermatogenesis via the regulation of DDX25 in rats. Environ Pollut 253:538–551. https://doi.org/10.1016/j.envpol.2019.06.107

    CAS  Article  Google Scholar

  85. Zhang S, Jiang C, Liu H, Guan Z, Zeng Q, Zhang C, Lei R, Xia T, Gao H, Yang L, Chen Y, Wu X, Zhang X, Cui Y, Yu L, Wang Z, Wang A (2013) Fluoride-elicited developmental testicular toxicity in rats: roles of endoplasmic reticulum stress and inflammatory response. Toxicol Appl Pharmacol 271(2):206–215. https://doi.org/10.1016/j.taap.2013.04.033

    CAS  Article  Google Scholar

  86. Jiang S, Liang C, Gao Y, Liu Y, Han Y, Wang J, Zhang J (2019) Fluoride exposure arrests the acrosome formation during spermatogenesis via down-regulated Zpbp1, Spaca1 and Dpy19l2 expression in rat testes. Chemosphere 226:874–882. https://doi.org/10.1016/j.chemosphere.2019.04.019

    CAS  Article  Google Scholar

  87. Adelakun SA, Akintunde OW, Ogunlade B (2021) Fluoride-induced testicular degeneration and sperm quality deteriorations: salutary role of Cyperus esculentus tubers (tiger nut) extract in animal model. Rev Int Androl 19(3):201–212. https://doi.org/10.1016/j.androl.2020.01.003

    Article  Google Scholar

  88. Liu Y, Liang C, Gao Y, Jiang S, He Y, Han Y, Olfati A, Manthari RK, Wang J, Zhang J (2019) Fluoride interferes with the sperm fertilizing ability via downregulated SPAM1, ACR, and PRSS21 expression in rat epididymis. J Agr Food Chem 67(18):5240–5249. https://doi.org/10.1021/acs.jafc.9b01114

    CAS  Article  Google Scholar

  89. Wang HW, Zhao WP, Tan PP, Liu J, Zhao J, Zhou BH (2017) The MMP-9/TIMP-1 system is involved in fluoride-induced reproductive dysfunctions in female mice. Biol Trace Elem Res 178(2):253–260. https://doi.org/10.1007/s12011-016-0929-3

    CAS  Article  Google Scholar

  90. Liang S, Zhao M, Ock SA, Kim N, Cui X (2016) Fluoride impairs oocyte maturation and subsequent embryonic development in mice. Environ Toxicol 31(11):1486–1495. https://doi.org/10.1002/tox.22153

    CAS  Article  Google Scholar

  91. Zhou Y, Qiu Y, He J, Chen X, Ding Y, Wang Y, Liu X (2013) The toxicity mechanism of sodium fluoride on fertility in female rats. Food Chem Toxicol 62:566–572. https://doi.org/10.1016/j.fct.2013.09.023

    CAS  Article  Google Scholar

  92. Gupta RS, Khan TI, Agrawal D, Kachhawa J (2007) The toxic effects of sodium fluoride on the reproductive system of male rats. Toxicol Ind Health 23(9):507–513. https://doi.org/10.1177/0748233708089041

    CAS  Article  Google Scholar

  93. Sun Z, Li S, Yu Y, Chen H, Ommati MM, Manthari RK, Niu R, Wang J (2018) Alterations in epididymal proteomics and antioxidant activity of mice exposed to fluoride. Arch Toxicol 92(1):169–180. https://doi.org/10.1007/s00204-017-2054-2

    CAS  Article  Google Scholar

  94. Sun Z, Zhang W, Li S, Xue X, Niu R, Shi L, Li B, Wang X, Wang J (2016) Altered miRNAs expression profiling in sperm of mice induced by fluoride. Chemosphere 155:109–114. https://doi.org/10.1016/j.chemosphere.2016.04.053

    CAS  Article  Google Scholar

  95. Sun Z, Zhang W, Xue X, Zhang Y, Niu R, Li X, Li B, Wang X, Wang J (2016) Fluoride decreased the sperm ATP of mice through inhabiting mitochondrial respiration. Chemosphere 144:1012–1017. https://doi.org/10.1016/j.chemosphere.2015.09.061

    CAS  Article  Google Scholar

  96. Sun Z, Wei R, Luo G, Niu R, Wang J (2018) Proteomic identification of sperm from mice exposed to sodium fluoride. Chemosphere 207:676–681. https://doi.org/10.1016/j.chemosphere.2018.05.153

    CAS  Article  Google Scholar

  97. Dvo?áková-Hortová K, Aandera M, Jursová M, Vašinová J, P?knicová J (2008) The influence of fluorides on mouse sperm capacitation. Anim Reprod Sci 108(1–2):157–170. https://doi.org/10.1016/j.anireprosci.2007.07.015

    CAS  Article  Google Scholar

  98. Kheradpisheh Z, Mirzaei M, Mahvi AH, Mokhtari M, Azizi R, Fallahzadeh H, Ehrampoush MH (2018) Impact of drinking water fluoride on human thyroid hormones: a case- control study. Sci Rep-Uk 8(1) https://doi.org/10.1038/s41598-018-20696-4

  99. Singh N, Verma KG, Verma P, Sidhu GK, Sachdeva S (2014) A comparative study of fluoride ingestion levels, serum thyroid hormone & TSH level derangements, dental fluorosis status among school children from endemic and non-endemic fluorosis areas. Springerplus 3(1):1–5. https://doi.org/10.1186/2193-1801-3-7

    CAS  Article  Google Scholar

  100. Skórka-Majewicz M, Goschorska M, ?wiere??o W, Baranowska-Bosiacka I, Styburski D, Kapczuk P, Gutowska I (2020) Effect of fluoride on endocrine tissues and their secretory functions – review. Chemosphere 260:127565. https://doi.org/10.1016/j.chemosphere.2020.127565

    CAS  Article  Google Scholar

  101. Abdelaleem MM, El-Tahawy NFG, Abozaid SMM, Abdel-Hakim SA (2018) Possible protective effect of curcumin on the thyroid gland changes induced by sodium fluoride in albino rats: light and electron microscopic study. Endocr Regul 52(2):59–68. https://doi.org/10.2478/enr-2018-0007

    Article  Google Scholar

  102. Khandare AL, Gourineni SR, Validandi V (2017) Dental fluorosis, nutritional status, kidney damage, and thyroid function along with bone metabolic indicators in school-going children living in fluoride-affected hilly areas of Doda district, Jammu and Kashmir, India. Environ Monit Assess 189(11) https://doi.org/10.1007/s10661-017-6288-5

  103. Malin AJ, Riddell J, Mccague H, Till C (2018) Fluoride exposure and thyroid function among adults living in Canada: effect modification by iodine status. Environ Int 121:667–674. https://doi.org/10.1016/j.envint.2018.09.026

    CAS  Article  Google Scholar

  104. Du Y, Zhou G, Gong B, Ma J, An N, Gao M, Yang M, Ma Q, Huang H, Zuo Q, Ba Y (2021) Iodine modifies the susceptibility of thyroid to fluoride exposure in school-age children: a cross-sectional study in Yellow River Basin, Henan. China Biol Trace Elem Res 199(10):3658–3666. https://doi.org/10.1007/s12011-020-02519-8

    CAS  Article  Google Scholar

  105. Jiang Y, Guo X, Sun Q, Shan Z, Teng W (2016) Effects of excess fluoride and iodide on thyroid function and morphology. Biol Trace Elem Res 170(2):382–389. https://doi.org/10.1007/s12011-015-0479-0

    CAS  Article  Google Scholar

  106. Chaitanya N, Karunakar P, Allam N, Priya MH, Alekhya B, Nauseen S (2018) A systematic analysis on possibility of water fluoridation causing hypothyroidism. Indian J Dent Res 29(3):358–363. https://doi.org/10.4103/ijdr.IJDR_505_16

    Article  Google Scholar

  107. Peckham S, Lowery D, Spencer S (2015) Are fluoride levels in drinking water associated with hypothyroidism prevalence in England? A large observational study of GP practice data and fluoride levels in drinking water. J Epidemiol Commun H 69(7):619–624. https://doi.org/10.1136/jech-2014-204971

    CAS  Article  Google Scholar

  108. Barberio AM, Hosein FS, Quinonez C, Mclaren L (2017) Fluoride exposure and indicators of thyroid functioning in the Canadian population: implications for community water fluoridation. J Epidemiol Community Health 71(10):1019–1025. https://doi.org/10.1136/jech-2017-209129

    Article  Google Scholar

  109. Liu Y, Téllez-Rojo M, Sánchez BN, Ettinger AS, Osorio-Yáñez C, Solano M, Hu H, Peterson KE (2020) Association between fluoride exposure and cardiometabolic risk in peripubertal Mexican children. Environ Int 134:105302. https://doi.org/10.1016/j.envint.2019.105302

    CAS  Article  Google Scholar

  110. Lombarte M, Fina BL, Lupo M, Buzalaf MA, Rigalli A (2013) Physical exercise ameliorates the toxic effect of fluoride on the insulin-glucose system. J Endocrinol 218(1):99–103. https://doi.org/10.1530/JOE-13-0067

    CAS  Article  Google Scholar

  111. Hu CY, Ren LQ, Li XN, Wu N, Li GS, Liu QY, Xu H (2012) Effect of fluoride on insulin level of rats and insulin receptor expression in the MC3T3-E1 cells. Biol Trace Elem Res 150(1–3):297–305. https://doi.org/10.1007/s12011-012-9482-x

    CAS  Article  Google Scholar

  112. Rigalli A, Ballina JC, Roveri E, Puche RC (1990) Inhibitory effect of fluoride on the secretion of insulin. Calcified Tissue Int 46(5):333–338. https://doi.org/10.1007/BF02563825

    CAS  Article  Google Scholar

  113. Pereira Ag CFDL (2017) Effects of fluoride on insulin signaling and bone metabolism in ovariectomized rats. J Trace Elem Med Biol 39:140–146. https://doi.org/10.1016/j.jtemb.2016.09.007

    CAS  Article  Google Scholar

  114. de Cássia Alves Nunes R, Chiba FY, Pereira AG, Pereira RF, de Lima CoutinhoMattera MS, Ervolino E, Louzada MJQ, Buzalaf MAR, Silva CA, Sumida DH (2016) Effect of sodium fluoride on bone biomechanical and histomorphometric parameters and on insulin signaling and insulin sensitivity in ovariectomized rats. Biol Trace Elem Res 173(1):144–153. https://doi.org/10.1007/s12011-016-0642-2

    CAS  Article  Google Scholar

  115. García-Montalvo EA, Reyes-Pérez H, Del Razo LM (2009) Fluoride exposure impairs glucose tolerance via decreased insulin expression and oxidative stress. Toxicology 263(2–3):75–83. https://doi.org/10.1016/j.tox.2009.06.008

    CAS  Article  Google Scholar

  116. Itai K, Onoda T, Nohara M, Kuribayashi T, Tanno K, Ohsawa M, Mori M, Okayama A (2020) Slightly elevated serum ionic fluoride levels inhibit insulin secretion and increase glucose levels in a general Japanese population: a cross-sectional study. Biol Trace Elem Res 199(8):2819–2825. https://doi.org/10.1007/s12011-020-02415-1

    CAS  Article  Google Scholar

  117. Malvezzi MAPN, Pereira HABS, Dionizio A, Araujo TT, Buzalaf NR, Sabino-Arias IT, Fernandes MS, Grizzo LT, Magalhães AC, Buzalaf MAR (2019) Low-level fluoride exposure reduces glycemia in NOD mice. Ecotox Environ Safe 168:198–204. https://doi.org/10.1016/j.ecoenv.2018.10.055

    CAS  Article  Google Scholar

  118. Trevizol Js BNDA (2020) Effects of low-level fluoride exposure on glucose homeostasis in female NOD mice. Chemosphere 254:126602. https://doi.org/10.1016/j.chemosphere.2020.126602

    CAS  Article  Google Scholar

  119. Guo H, Kuang P, Luo Q, Cui H, Deng H, Liu H, Lu Y, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2017) Effects of sodium fluoride on blood cellular and humoral immunity in mice. Oncotarget 8(49):85504–85515. https://doi.org/10.18632/oncotarget.20198

    Article  Google Scholar

  120. Wei W, Pang S, Fu X, Tan S, Wang Q, Wang S, Sun D (2019) The role of PERK and IRE1 signaling pathways in excessive fluoride mediated impairment of lymphocytes in rats’ spleen in vivo and in vitro. Chemosphere 223:1–11. https://doi.org/10.1016/j.chemosphere.2019.02.031

    CAS  Article  Google Scholar

  121. Wei WWQPS (2020) Excessive fluoride exposure induces thymocyte apoptosis and impairs__cell division_ roles of the PERK and IRE1 pathways. Toxicol Lett 328:35–44. https://doi.org/10.1016/j.toxlet.2020.04.014

    CAS  Article  Google Scholar

  122. Gutierrez-Salinas J, Morales-Gonzalez JA, Madrigal-Santillan E, Esquivel-Soto J, Esquivel-Chirino C, Gonzalez-Rubio MG, Suastegui-Dominguez S, Valadez-Vega C (2010) Exposure to sodium fluoride produces signs of apoptosis in rat leukocytes. Int J Mol Sci 11(9):3610–3622. https://doi.org/10.3390/ijms11093610

    CAS  Article  Google Scholar

  123. Liu J, Wang H, Zhao W, Li X, Lin L, Zhou B (2019) Induction of pathological changes and impaired expression of cytokines in developing female rat spleen after chronic excess fluoride exposure. Toxicol Ind Health 35(1):43–52. https://doi.org/10.1177/0748233718809773

    CAS  Article  Google Scholar

  124. De la Fuente B, Vázquez M, Rocha RA, Devesa V, Vélez D (2016) Effects of sodium fluoride on immune response in murine macrophages. Toxicol In Vitro 34:81–87. https://doi.org/10.1016/j.tiv.2016.03.001

    CAS  Article  Google Scholar

  125. Hernández-Castro B, Vigna-Pérez M, Doníz-Padilla L, Ortiz-Pérez MD, Jiménez-Capdeville E, González-Amaro R, Baranda L (2010) Effect of fluoride exposure on different immune parameters in humans. Immunopharm Immunot 33(1):169–177. https://doi.org/10.3109/08923973.2010.491081

    CAS  Article  Google Scholar

  126. Gutowska I, Baranowska-Bosiacka I, Safranow K, Jakubowska K, Olszewska M, Telesi?ski A, Siennicka A, Dro?dzik M, Chlubek D, Stachowska E (2012) Fluoride in low concentration modifies expression and activity of 15 lipoxygenase in human PBMC differentiated monocyte/macrophage. Toxicology 295(1–3):23–30. https://doi.org/10.1016/j.tox.2012.02.014

    CAS  Article  Google Scholar

  127. Gutowska I, Baranowska-Bosiacka I, Siennicka A, Telesi?ski A, Sta?czyk-Dunaj M, Weso?owska T, G?ssowska M, K?os P, Zakrzewska H, Machali?ski B, Chlubek D, Stachowska E (2012) Activation of phospholipase A2 by low levels of fluoride in THP1 macrophages via altered Ca2+ and cAMP concentration. Prostaglandins Leukot Essent Fatty Acids 86(3):99–105. https://doi.org/10.1016/j.plefa.2012.02.002

    CAS  Article  Google Scholar

  128. Ma YZKRF (2017) Developmental fluoride exposure influenced rat’s splenic development and cell__cycle via disruption of the ERK signal pathway. Chemosphere 187:173–180. https://doi.org/10.1016/j.chemosphere.2017.08.067

    CAS  Article  Google Scholar

Download references

Author information

Authors and Affiliations

Contributions

Jing Zhou, Wei Wei, and Dianjun Sun analyzed the references, Jing Zhou wrote the article, and Wei Wei and Dianjun Sun modified the article.

Correspondence to Wei Wei.


*Original abstract online at https://link.springer.com/article/10.1007/s12011-022-03302-7