Abstract
Fluorosis, caused by ingestion of excess fluoride, is endemic in at least 25 countries across the globe, China and India being the worst affected among them. Dental, skeletal and non-skeletal are the major types of fluorosis affecting millions of people in these countries. A number of genetic epidemiological studies carried out by investigators have shown the evidence for association between genetic polymorphisms in candidate genes and differences in the susceptibility pattern of different types of fluorosis among individuals living in the same community and having the same environmental exposure. These studies have pointed out that genetic variants in some candidate genes like COL1A2 (Collagen type 1 alpha 2), CTR (Calcitonin receptor gene), ESR (Estrogen receptor), COMT (Catechol-o-methyltransferase), GSTP1 (Glutathione S-transferase pi 1), MMP-2 (Matrix metallopeptidase 2), PRL (Prolactin), VDR (Vitamin D receptor) and MPO (Myeloperoxidase) could increase or decrease the risk of fluorosis among the exposed individuals in endemic areas. So, it is increasingly becoming evident that an individual’s genetic background could play a major role in influencing the risk to fluorosis when other factors like specific environmental exposures including dietary patterns of fluoride intake and other nutrients remain the same. The current manuscript presents an up-to-date critical review on fluorosis, focusing mainly on the genetic association studies that have looked at the possible involvement of genetic factors in fluorosis.