# Fluoride Developmental Neurotoxicity:

# **Dose-Response Analyses of Recent High Quality Studies**

Chris Neuratha, Paul Connettb, Michael Connettc, Bill Hirzyb

<sup>a</sup> American Environmental Health Studies Project, <sup>b</sup> Fluoride Action Network, <sup>c</sup> Waters Kraus & Paul







### 29 high quality studies

27 found statistically significant adverse effects (↓) and 2 found no effect (–)

↓ = exposures below 0.7 mg/L water F or equivalent (10 studies)

 $\downarrow$  = exposures below 1.5 mg/L water F or equivalent (8 studies)

 $\downarrow$  = exposures above 1.5 mg/L water F or equivalent (9 studies)



### Dose-response analysis summaries

| Study        | Effect Magnitude β                 | BMDL      |
|--------------|------------------------------------|-----------|
| Xiang 2003   | <b>–5.7</b> IQ / 1 mg/L water F    | 0.27 mg/d |
| Xiang 2003   | <b>+10%</b> IQ<80 / 1 mg/L water F |           |
| Zhang 2015b  | <b>–9.7</b> IQ / 1 mg/L urine F    | 0.16 mg/L |
| Cui 2018     | <b>–12.3</b> IQ / 1 mg/L urine F   | 0.00 mg/L |
| Bashash 2017 | <b>–6.3</b> IQ / 1 mg/L urine F    | 0.10 mg/L |
| Bashash 2018 | +5.7 pts / 1 mg/L urine F          |           |
| Green 2019   | <b>–4.5</b> IQ / 1 mg/L urine F    | 0.12 mg/L |
| Till 2020    | <b>-8.8</b> IQ / 1 mg/L water F    | 0.06 mg/L |
|              |                                    |           |
| average      | –7.9 IQ / 1 mg/L                   | 0.09 mg/L |

## **Examples of studies suitable for dose-response analyses**

Dose-response curves and BMD analyses based on data or figures in each paper



**Xiang 2003** 











Bashash 2018





#### Notes

- 1.) Exposures measured as urine F concentrations are considered equivalent to drinking water F concentrations.
- 2.) Community water fluoridation concentration is typically 0.7 1.0 mg/L.
- 3.) For studies with multiple subpopulations, outcomes or exposure measures, the most sensitive significant association was chosen, consistent with standard risk assessment practice.
- 4.) Benchmark Dose analyses (BMD) used response (BMR) of –1 IQ point as adverse effect.
- 5.) No intra-species Uncertainty Factor (UF) applied to BMDLs.
- 6.) BMDLs for Xiang 2003 from Hirzy 2016; for Bashash 2017, Green 2019 from Grandjean 2019; for Zhang 2015b, Cui 2018, Till 2020 by Neurath using PROAST BMD software or linear dose-response method of Grandjean 2019.

### References

\*Adapted from NTP draft monograph data: <a href="https://hawcproject.org/assessment/405/">https://hawcproject.org/assessment/405/</a> <a href="https://hawcproject.org/summary/visual/524/">https://hawcproject.org/summary/visual/524/</a>

Hirzy 2016

https://www.fluorideresearch.org/494Pt1/files/FJ 2016 v49 n4Pt1 p379-400 pg.pdf

Grandjean 2019

https://doi.org/10.1186/s12940-019-0551-x

PROAST BMD software:

https://proastweb.rivm.nl/

additional information:
<a href="http://fluoridealert.org/studies/neurath-powerpoint-developmental-neurotoxicity/">http://fluoridealert.org/studies/neurath-powerpoint-developmental-neurotoxicity/</a>