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Abstract

IMPORTANCE Water and water-based beverages are the main source of systemic fluoride intake;
however, an individual’s total exposure to fluoride also reflects contributions from other sources such as
food, dental products, industrial emissions, and some pharmaceuticals. Previous meta-analyses suggest

that exposure to fluoride adversely affects children's intelligence.

OBJECTIVE[ lTo perform a systematic review and meta-analysis to investigate associations between

fluoride exposure and children’s intelligence. | :;//[ Commented [I1]: See DocO1_Meta-analysis, 1.B., page 1 }

\{ Commented [I12]: See Doc02_Meta-analysis, 2.B., page 1 }

DATA SOURCES BIOSIS, EMBASE, PsychINFO, PubMed, Scopus, Web of Science, CNKI, and

Commented [I3]: See Doc08_Meta-analysis, 8.G., page 5 ‘

and 6
Wanfang databases were searched for relevant literature published up to November 2021.
STUDY SELECTION [lnclusion criteria were assessment of cognitive outcomes, fluoride exposure, and
statistical data on effect size| /[ Commented [4]: See Doc01_Meta-analysis, 1.C., page 1 J

DATA EXTRACTION AND SYNTHESIS Meta-analysis of Observational Studies in Epidemiology
(MOOSE) reporting guidelines were followed for data extraction. The quality of individual studies was
evaluated for risk of bias using a standardized tool. Pooled standardized mean differences (SMDs) and

regression coefficients were estimated with random-effects models.

MAIN OUTCOMES AND MEASURES Children’s intelligence levels reflected by intelligence quotient

(IQ) scores.

RESULTS [The meta-analysis of 55 studies (N = 18,845 children) with group-level exposures found that,

when compared to children exposed to lower fluoride levels, children exposed to higher fluoride levels

had lower mean IQ scores (pooled SMD: —0.46; 95% CI: —0.55, —0.37; p-value < 0.001).| There was a

_—| Commented [I5]: See Doc08_Meta-analysis, 8.K., page 7 ‘
and 8

. . . . s
dose-response relationship between group-level fluoride exposure measures and mean children’s 1Q. [The Commented [I6]: See Doc01_Meta-analysis, 1.D., page 2 J

meta-analysis of studies that reported individual-level measures of fluoride and children’s IQ scores

found a decrease of 1.81 points (95% CI: —2.80, —0.81; p-value < 0.001) per 1-mg/L increase in urinary
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ﬂuoride\. Overall, the direction of the association was robust to stratification by study quality (high vs. low /[ Commented [I7]: See Doc08_Meta-analysis, 8.Q., page 10 J

risk of bias), sex, age group, outcome assessment, study location, exposure timing, and exposure metric.

CONCLUSIONS AND RELEVANCE This meta-analysis confirms results of previous meta-analyses

and extends them by including newer, more precise studies with individual-level exposure measures. [The

consistency of the data supports an inverse association between fluoride exposure and children’s 1Q. | Commented [I8]: See DocO6a_Meta-analysis, 6a.A., page
1
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Introduction

[Fluoride from natural sources occurs in some community water systems and, in the United States
and some other countries, fluoride is added to public drinking water systems for the prevention of tooth
decay. [Water and water-based beverages are the main source of systemic fluoride intake; however, an

individual’s total exposure also reflects contributions from fluoride in other sources such as food, dental

products, industrial emissions, and some pharmaceuticals.ll Accumulating evidence suggests that fluoride /{ Commented [19]: See Doc03_Meta-analysis, 3.B. (page 1)
and 3.C. (page 1, 2, and 3)

exposure may affect brain development. A 2006 report from the National Research Council (NRC) Commented [I10]: See Doc08_Meta-analysis, 8.F., page 5 J

concluded that high levels of naturally occurring fluoride in drinking water may be of concern for
neurotoxic effects.? This report was largely based on studies from endemic fluorosis areas in China that
had limitations in study design or methods (e.g., high risk of bias). Following the NRC review, more
evidence has emerged in studies from India, Iran, Pakistan, New Zealand, Spain, and Canada (Figure 1).

[Two previous meta-analyses® # found an association between high fluoride exposure and lower children’s

IQ\; however, many of the studies in these meta-analyses lacked the information necessary to evaluate /‘ Commented [111]: See Doc01_Meta-analysis, 1.F and ‘
1.G., page 3

study quality and all used group-level estimates of fluoride exposure\. Since the most recent meta-

{ Commented [I112]: See Doc01_Meta-analysis, 1.F., page 3 }

analysis,* eleven new studies on exposure to fluoride and children’s IQ have been published, including
three prospective North American birth cohort studies®” that used individual-level measures of maternal

and children’s urinary fluoride.

[To incorporate this newer evidence, and to complement a larger systematic review?® that
concluded there is moderate confidence in the evidence of an inverse association between fluoride

exposure and children’s IQ, we conducted a meta-analysis of studies that provided group-and individual-

Commented [113]: See Doc02_Meta-analysis, 2.C., page 1

level fluoride exposure measurements in relation to children’s IQ scores. \ and 2
.
Commented [I114]: See Doc02_Meta-analysis, 2.Q., page 5
lMethods\ and 6
| Commented [l15]: See Doc05_Meta-analysis, 5.H., page 8
[The search, selection, extraction, and risk-of-bias evaluation of studies for this meta-analysis and 9

. . l . . . . Commented [I116]: See Doc05_Meta-analysis, 5.H., page 8
were part of a larger systematic review.¥ Brief methods are outlined below with detailed methods and 9

| Commented [117]: See Doc02_Meta-analysis, 2.A. (page

i i 9 ; iz
available in the protocol” and the Supplemental Materials. 1) and 2.0, (page 5 and 6)
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Systematic literature review
[Literature searches were conducted in BIOSIS, EMBASE, PsychINFO, PubMed, Scopus, Web of

Science, CNKI, and Wanfang databases through November 2021, without language restrictions. Search

strategies are available in the protocol.g\ /[ Commented [118]: See Doc01_Meta-analysis, 2.D., page 2 }

Study selection

[To be eligible for inclusion, individual study publications had to satisfy review eligibility criteria

outlined in the protocol.gl References retrieved from the literature search were independently screened by /[ Commented [119]: See Doc02_Meta-analysis, 2.E., page 2 J

two reviewers by title and abstract followed by full-text review. Studies that estimated the association
between exposure to fluoride (based on environmental measures or biomonitoring data, reported as either
individual-level or group-level measurements) and a quantitative measure of children’s intelligence were
included. [Studies that did not report quantitative effect estimates (mean outcome measures or regression

coefficients), measures of variability (95% confidence intervals [Cls], standard errors [SEs], or standard

deviations [SDs]), or numbers of participants were excluded. \Studies with missing measures of variability | Commented [120]: See Doc05_Meta-analysis, 5.L., page
10

but with reported p-values for differences were included, and SDs were calculated using the approach in
the Cochrane Handbook for Systematic Reviews.!® To avoid sample overrepresentation, if the same

cohort was followed at multiple timepoints resulting in multiple study publications,'" !?

only the study
publication that included the largest number of participants was included in this meta-analysis (see

eTable 1).

Data extraction

Data were collected from included studies by one extractor and verified by a second extractor.
Data were extracted in Health Assessment Workspace Collaborative (HAWC), an open source, web-
based application for data extraction elements listed in the protocol. Data extraction results for included

studies are publicly available and downloadable (https://hawcproject.org/assessment/405/).
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Quality assessment: Risk-of-bias evaluation
[Quality of individual studies, also called “risk of bias,” was assessed using the National

Toxicology Program’s Office of Health Assessment and Translation approach.”l Studies were

independently evaluated by two trained assessors who answered risk-of-bias questions following
prespecified criteria detailed in the protocol.” Risk-of-bias questions concerning confounding, exposure
characterization, and outcome assessment were considered key. If not addressed appropriately, these
questions were thought to have the greatest potential impact on the results.’ [The other risk-of-bias
questions were used to identify other concerns that may indicate serious risk-of-bias issues (e.g., selection

bias, statistical analysis). |No study was excluded from the meta-analysis based on concerns for risk of

bias; however, subgroup analyses were conducted with and without high risk-of-bias studies (i.e., studies
rated “probably high” risk of bias for at least two key risk-of-bias questions or “definitely high” for any

single question) to assess their impact on the results. \

Statistical analysis
We conducted the following analyses, planned a priori in the protocol: (1) a mean-effects meta-
analysis, (2) a dose-response mean-effects meta-analysis, and (3) a regression slopes meta-analysis. We

also conducted several subgroup and sensitivity analyses.

The mean-effects meta-analysis included studies that reported mean IQ scores and group-level
exposures for at least one exposed and one reference group. The effect estimates in the primary mean-
effects meta-analysis were the standardized mean differences (SMDs) for heteroscedastic population

variances.'*!'¢ The SMDs were calculated from the difference in Lmean\ 1Q scores between an exposed

group and a reference group. If mean IQ scores were reported for multiple exposure groups within a
single study, the highest exposure group was considered the exposed group and the lowest exposure
group was considered the reference group. [A sensitivity analysis was performed to evaluate the impact of
all exposure groups combined compared to a reference group (see additional details on the approach,

effect estimation, and study selection in the Supplemental Materials). IPredefined subgroup analyses
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[ Commented [I121]: See Doc01_Meta-analysis, 1.H., page 3 }

and 3

Commented [122]: See Doc02_Meta-analysis, 2.F., page 2 ‘

Commented [I123]: See DocO6a_Meta-analysis, 6a.B.,
page 2

~| Commented [l24]: See Doc06b_Meta-analysis, 6b.N.,

page 12 and 13

Commented [EAM25]: See Doc01_Meta-analysis, 1.J.,
page 4.

Note: Current language reflects revisions to the earlier
version of document.




were stratified by risk of bias (high or low), study location (e.g., country), outcome assessment, exposure

matrix (e.g., urinary fluoride or water fluoride concentrations), sex, and age group] To further evaluate

potential sources of heterogeneity, we conducted meta-regression analyses using mean age in years (from

the age range reported in each study) and year of publication in each study.

To determine whether the data support an exposure-response relationship, we conducted a dose-
response mean-effects meta-analysis. This analysis included studies from the mean-effects meta-analysis
that reported fluoride exposure levels and used a one-step approach as described in the protocol.” !7- 18
This approach uses linear mixed models to analyze all available mean effect estimates for the reference
group and one or more exposure group and estimates a pooled dose-response curve using a restricted
maximum likelihood estimation method. Model comparison was based on the maximum likelihood
Akaike information criterion (AIC).'{ We also examined whether there was a dose-response relationship
at lower exposure levels that corresponded with the U.S. Environmental Protection Agency drinking
water standards® and World Health Organization drinking water guidelines?! (details provided in the

Supplemental Materials).\

The regression slopes meta-analysis included studies that reported regression slopes to estimate
associations between individual-level fluoride exposure and children’s IQ. The primary regression slopes
meta-analysis used regression slopes from models that adjusted for potential confounders. If results from
multiple models were reported within a single study, either the most adjusted results or the main model
results as presented by the study authors were selected. \The study outcomes were evaluated with respect

to a 1-mg/L unit increase in water or urinary fluoride, or 1-mg/day fluoride intake. \

__—| Commented [I28]: See Doc02_Meta-analysis, 2.1., page 3

[Data from individual studies were pooled using a random-effects model.zzﬂ Heterogeneity was

__—| Commented [I29]: See DocO6a_Meta-analysis, 6b.R.,

assessed by Cochran’s Q test?® and the I? statistic.>* Forest plots were used to display results and to

examine possible heterogeneity between studies.HPotential publication bias was assessed by developing

_—| Commented [I30]: See Doc05_Meta-analysis, 5.J., page 9

funnel plots and performing Egger regression on the estimates of effect size.>?’ If publication bias was
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__—| Commented [I27]: See Doc01_Meta-analysis, 1.E. (page

2) and 1.K. (page 4)
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28,29

present, trim-and-fill methods were used to estimate the number of missing studies and to predict the

impact of the hypothetical “missing” studies on the pooled effect estimate. [Subgroup analyses were

/[ Cc ted [I31]: See Doc05_Meta-analysis, 5.1., page 9 }

performed to investigate sources of heterogeneity.\ Subgroup analyses were stratified by risk of bias (high

or low), study location (e.g., country), outcome assessment, exposure matrix (e.g., urinary fluoride or

water fluoride concentrations), pre- or post-natal exposure, and sex.

Statistical analyses were performed using the software STATA version 17.0° with the combine,
meta esize, meta set, meta summarize, drmeta, meta funnel, meta bias, meta trimfill and metareg

packages.’!

[Results\

Cc ted [132]: See Doc06b_Meta-analysis_6b.V.,
page 18 and 19

/[ Cc ted [133]: See Doc02_Meta-analysis, 2.N., page 4 ]

Study sample

Results of the study identification process are provided in eFigure 1. Characteristics of the
60 publications included in the meta-analysis are shown in Table 1 (see eTable 1 for list of excluded
publications). A total of 55 publications reported mean IQ scores for group-level exposures. Eleven
publications reported regression slopes for individual-level exposures based on urinary or water fluoride
concentrations.>” ! 123237 Additional details on study characteristics are provided in the Supplemental
Materials. Results from risk-of-bias evaluations are presented in eFigure 2a and eFigure 2b. Study-

specific effect estimates used in the meta-analysis are presented in eTable 2.

Mean-effects meta-analysis

[The meta-analysis of 55 studies (45 high risk-of-bias studies and 10 low risk-of-bias studies) that
provided mean IQ scores shows that, when compared to children exposed to lower levels of fluoride,
children exposed to higher fluoride levels had statistically significantly lower IQ scores (random-effects

pooled SMD, —0.46; 95% CI: —0.55, —0.37; p-value < 0.001) (Table 2, Figure 2).\ [There was evidence of

1 Cc ted [I34]: See Doc02_Meta-Analysis, 2.J. (page

high heterogeneity (I> = 87%, p-value < 0.001; Table 2) and publication bias (funnel plot and Egger’s p-

value < 0.001, Begg’s p-value = 0.031; eFigures 3 and 4). lAdjusting for possible publication bias

4) and Doc08_Meta-analysis, 8.M. (page 8 and 9)
Note: Changes in study numbers from reviewer text reflects
updated literature search.

/[ Cc ted [135]: See Doc02_Meta-analysis, 2.K., page 4 ]
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through trim-and-fill analysis suggested the imputation of seven additional studies to the right side, with
an adjusted pooled SMD of — 0.36 (95% CI: —0.46, —0.26) (eFigures 5 and 6). The pattern of results
across the 55 studies was consistent; 52 (95%) reported an inverse association with SMDs ranging from

—5.34 (95% CI: —6.34, —4.34) to —0.04 (95% CI: —0.45, 0.36) (Figure 2). Th&(95% CL: —0.19, 0.21),°

0.01 (95% CI: —0.19, 0.22),*® and 0.13 (95% CI: —0.16, 0.42).5] [Three studies®® 40:4! [iranslated in Li et al. 20080] /{ Cc ted [I36]: See DocO6b_Meta-analysis, 6b.C., }
page 2 and 3

lacked clear descriptions of their intelligence assessment methods; however, sensitivity analyses did not

Commented [I137]: See Doc05_Meta-analysis, 5.J., page 9 ‘

reveal substantial changes in the pooled SMD estimate when these studies were excluded or when a and 10

study* that reported the cognitive subset of evaluations using Bayley and McCarthy tests was included

(eTable 3). > ted [138]: See DocO1_Meta-analysis, L., page 3 |
Among the low risk-of-bias studies (n = 10), > & 13233, 36,4447 the random-effects pooled SMD

was —0.22 (95% CI: —0.39, —0.05; p-value = 0.011) with high heterogeneity (I> = 83%) (Table 2 and

eFigure 7). There was no evidence of publication bias (funnel plot and Egger’s p-value = 0.93;

eFigures 8 and 9). [Among the high risk-of-bias studies (n = 45), the random-effects pooled SMD was

—0.52 (95% CI: —0.63, —0.42; p-value < 0.001) with high heterogeneity (I> = 86%,) kTable 2 and eFigure — cc ted [EAM39]: See Doc02_Meta-analysis, 2.L.,

7). There was evidence of publication bias among the high risk-of-bias studies (funnel plot and Egger’s p- l’:laogtir4éhanges in study numbers from review text reflects

updated literature search.

value < 0.001; eFigures 8 and 9); adjusting for possible publication bias through trim-and-fill analysis
supports the results with an adjusted pooled SMD estimate of —0.37 (95% CI: —0.48, —0.25) (eFigures 10
and 11). Subgroup analyses by sex, age group, study location, outcome assessment type, and exposure
assessment type further support the consistent and robust pattern of an inverse association between
fluoride exposure and children’s 1Q (Table 2, eFigures 12-16). lThe subgroup and meta-regression
analyses did not explain a large amount of the overall heterogeneity; however, the degree of heterogeneity
was lower We also examined whether there was a dose-response relationship at lower exposure levels that

corresponded with the U.S. Environmental Protection Agency drinking water standards* and World

restricted to Iran (I>=56%), children ages 10 and older (1>=68%), and girls (1>=76%) (sce Supplemental ¢ ted [140]: See DocO6b_Meta-analysis, 6b.G.,
page 7and 8

Materials).
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[The sensitivity analysis to evaluate the impact of combining all exposed groups and comparing

them to the reference group did not appreciably change the effect estimates| (eTable 3). Sensitivity /[ Cc

ted [141]: See Doc08_Meta-analysis, 8.H., page 6 }

analyses that removed an outlier study*® or a study with an unspecified IQ test*! [translated in Li ctal. 2008b] 5]q0

did not appreciably change the effect estimates (eTable 3).

Dose-response mean-effects meta-analysis
[The dose-response mean-effects meta-analysis combining data from 29 studies with group-level
fluoride measurements in drinking water (23 high risk-of-bias and 6 low risk-of-bias studies) and 18

studies with group-level mean urinary fluoride levels (9 high risk-of-bias and 9 low risk-of-bias studies)

show statistically significantly lower children’s IQ scores with increasing fluoride exposures. Basedon ¢

ted [142]: See Doc08_Meta-analysis, 8.1., page 6

and 7

the linear models, the decrease in mean SMD between exposed and reference groups is —0.15 (95% CI:
—0.20, —0.11; p-value < 0.001) for drinking water fluoride levels and —0.16 (95% CI: —0.24, —0.08; p-
value < 0.001) for urinary fluoride levels (eTable 4). Based on the AIC and likelihood ratio tests, the best
model fit was achieved when quadratic or restricted cubic spline exposure levels were added to the linear
models for drinking water (eFigure 17); the linear model was the best fit for urinary fluoride (eFigure
18). Given the small difference in AICs between the different models, and for ease of interpretability, the
linear model results were chosen for the purposes of discussion, although results from all models are
presented (eTable 4). The direction of the associations did not change when the exposed groups were

restricted to <4 mg/L or <2 mg/L fluoride in drinking water or fluoride in urine (eTable 4 and eTable 5).

Regression slopes meta-analysis

The regression slopes meta-analysis includes ten studies with individual-level exposure measures
(1 high risk-of-bias and 9 low risk-of-bias studies) (Table 1). Each of these studies reported urinary
fluoride levels,™” ' 123237 two reported fluoride intake,* 7 and two reported water fluoride levels.® ! Two
studies” 2 are not included in the primary meta-analysis they had overlapping populations with already-

included studies® ! respectively (see Supplemental Materials). Similarly, three studies reporting scores
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43,48, 49

based on Bayley assessments were only included in sensitivity analyses (see Supplemental

Materials).

[The overall pooled effect estimate from the nine studies with individual-level urinary fluoride
measures shows that a 1-mg/L increase in urinary fluoride is associated with a statistically significant
lower 1Q score of 1.81 points (95% CI: —2.80, —0.81; p-value < 0.001) with evidence of heterogeneity
(12 = 77%, p-value < 0.001; Table 3, eFigure 19) and no indications of publication bias (eFigures 20 and

21). When restricted to only low risk-of-bias studies, the decrease in IQ score was 1.33 points (95% CI:

—2.09, =0.57; p-value < 0.001).| There was evidence of moderate heterogeneity (I = 46%, p- 1 Ce ted [EAM43]: See Doc02_Meta-analysis, 2.M.,
page 4.
value < 0.072; Table 3, eFigure 22) and no indications of publication bias. [The results for fluoride intake Note: Changes in study numbers from reviewer text reflects

updated literature search.

and water fluoride levels are available in Supplemental Materials\. | ,//[ C ted [144]: See Doc02_Meta-analysis, 2.0., page 5 ]

Subgroup analyses by risk of bias, sex, country, exposure type, outcome assessment type, and
pre- or post-natal exposure further support the consistent and robust pattern of an inverse association
between fluoride exposure and children’s 1Q (Table 3, eFigures 22—27).[ The observed heterogeneity in
the overall effect estimate was explained by the subgroup analyses, with no significant heterogeneity

remaining in analyses of low-risk-of bias studies, by sex, by country, by assessment type, and by

exposure timing (Table 3)\. The sensitivity analyses including reporting scores based on Bayley 1 Cc ted [145]: See DocO6b_Meta-analysis, 6b.G.,
page 7 and 8
assessments* 44 showed no substantial changes in the pooled effect estimates (eTable 6).
DiSCUSSiOHI /[ Cc ted [146]: See Doc02_Meta-analysis, 2.P., page 5 }

The results of this meta-analysis support a statistically significant association between higher
fluoride exposure and lower children’s 1Q. The direction of the association was robust to stratification by
risk of bias, sex, age group, timing of exposure, study location, outcome assessment type, and exposure
assessment type. There is also evidence of a dose-response relationship. [Although the estimated decreases
in IQ may seem small, research on other neurotoxicants has shown that subtle shifts in IQ at the

population level can have a profound impact on the number of people who fall within the high and low
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ranges of the population’s IQ distribution./** For example, a 5-point decrease in a population’s IQ would | Commented [147]: See Doc08_Meta-analysis, 8.P., page 9

and 10
nearly double the number of people classified as intellectually disabled.
[The results of the mean-effects meta-analysis are consistent with two previous meta-analyses that,
when comparing children exposed to lower fluoride levels, reported statistically significantly lower I1Q
scores in children exposed to higher fluoride levels (p < 0.001) (Table 2)\, However, this meta-analysis /[ Commented [148]: See Doc08_Meta-analysis, 8.N., page 9 }

included more recently published studies that were considered low risk of bias and studies with different
exposure assessment types. We also found a statistically significant dose-response between lower
children’s IQ with increasing fluoride exposures as measured in both drinking water (p-value < 0.001)
and urine (p-value < 0.001). Associations appeared to be non-linear for drinking water and linear for
urine. [The Duan et al. meta-analysis reported a significant non-linear dose-response relationship above 3
ppm [3 mg/L] in water. A more recent literature review>® did not comment on the shape of the dose-
response curve; however, based on the three publications from Mexico and Canada,>” the author

concluded that the association between maternal urinary fluoride and children’s neurotoxicity appeared to

be “dose dependent.” __—| Commented [149]: See Doc01_Meta-analysis, 1.N. and

1.0., page 7
[Whereas the previously published meta-analyses only included group-level exposures, the
regression slopes meta-analysis included nine studies with individual urinary fluoride measures, a more
precise exposure measure. It also included recent North American prospective cohort studies®” with
maternal urinary fluoride levels comparable to those found in the United States.”l In contrast tourinary | Commented [I50]: See DocO1_Meta-analysis, 1.M., page
6and 7

fluoride measures, drinking water measures capture only a portion of a person’s total exposure to fluoride.
Consequently, relying on drinking water levels alone likely underestimates an individual’s total exposure
to fluoride. [For community water systems that add fluoride, the Public Health Service recommends a
fluoride concentration of 0.7 mg/L; however, it is important to note that there are regions of the United
States where public systems and private wells contain natural fluoride concentrations of more than 2
mg/L.*® In April 2020, the Centers for Disease Control and Prevention (CDC) estimated that community

water systems supplying water with >2 mg/L naturally occurring fluoride served 0.31% of the U.S.
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population (~1 million people) For the purposes of reducing dental fluorosis, the CDC recommends that

Commented [I51]: See Doc03_Meta-analysis, 3.B. (page 1
and 2) and 3.C. (page 2 and 3)

parents use an alternative source of water for children aged 8 years and younger and for bottle-fed infants

if their primary drinking water contains greater than 2 mg/L of ﬂuoride,“]

\/[ Commented [152]: See Doc01_Meta-analysis, 1.Q., page 8 }

\{ Commented [I153]: See Doc02_Meta-analysis, 2.T., page 6 }

Strengths and Limitations

Strengths of this meta-analysis include a large body of literature and predefined systematic search
and screening process, a risk-of-bias assessment of individual studies, a variety of intelligence assessment
methods and exposure matrices, varying exposure levels from multiple study locations, prespecified
subgroup analyses, and use of both group-level and individual-level exposure data. The direction of the

association is consistent across different analytical approaches and subgroup analyses.

There are also limitations to consider. Most of the studies included in the mean-effects and dose-

response mean effects meta-analyses were considered to have study design and/or methodological

limitations. For example, all but three studies were cross-sectional in design.\ [However, among the low /[ Commented [I54]: See Doc02_Meta-analysis, 2.U., page 7 J

risk-of-bias cross-sectional studies, most provided information to suggest that exposure preceded the

outcome (e.g., including only children who had lived in the area since birth, or children that had dental

fluorosis). [In addition, subgroup analyses suggest that the association between higher fluoride exposure /‘ Commented [I55]: See Doc08_Meta-analysis, 8.T., page ‘
11

and lower 1Q was consistent even when restricted to low risk-of-bias studies (see Table 2 and eFigure 7
for additional details). [Although we conducted subgroup analyses by sex, only 1 of the 14 studies that
reported IQ scores separately for boys and girls analyzed fluoride exposure for each sex separately.® This

is essential for evaluating whether a differential change in IQ by sex may be related to higher

susceptibility or higher exposure in that sex]. [With a couple exceptions, the subgroup analyses in the /[ Commented [I56]: See Doc03_Meta-analysis, 3.E., page 4 J

mean-effects meta-analysis did not explain a large amount of the overall heterogeneity. However, the
heterogeneity in the regression slopes meta-analysis was explained by subgroup analyses. This suggests
that [the aggregate nature of the mean-effects meta-analysis might not be sufficiently sensitive to capture

potential sources of heterogeneity, as seen possible when using studies with individual-level data in the

Commented [I57]: See Doc06b_Meta-analysis, 6b.0.,
page 13 and 14

regression slopes meta-analysis. However, the large number of studies included in the mean-effects meta- _— ﬂ
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analysis and the consistency in the direction of the association across the analyses make this is less of a

concern. ‘ ‘ _—| Commented [I58]: See Doc06b_Meta-analysis, 6b.G., ‘

page 7 and 8
[Another limitation of the mean-effects meta-analyses is that exposure values are assumed to be ::: d";me"ted [159]: See Doc08_Meta-analysis, 8., page 4 ‘

the same for each child in an exposure group, either because the study used a community-level water

fluoride measure or a median, mean, or midpoint in water or urine as the exposure value. Fluoride

exposure may vary considerably depending on individual behaviors and is best captured by individual-

level measures of total exposure, such as urinary fluoride measures. h?vecause drinking water measures

capture only some of a person’s total exposurd to fluoride, it is reasonable to assume that some children in

the meta-analysis had higher exposure to fluoride and those children may have skewed the mean 1Q

deficits of the entire group. Urinary fluoride levels include all ingested fluoride and are considered a valid ,,,/—/[ Commented [I60]: See Doc02_Meta-analysis, 2.5., page 6 }

measure to estimate total fluoride exposure.®!©|When compared with 24-hour urine samples, spot urine ,,,,//‘ Commented [161]: See DocO1_Meta-analysis, 1.M., page ‘
6and 7

samples are more prone to the influence of timing of exposure (e.g., when water was last consumed, when
teeth were last brushed) and can also be affected by differences in dilution. However, correlations
between urinary fluoride concentrations from 24-hour samples and spot samples adjusted for urinary

dilution have been described,®® and with one exception® all studies in the regression slopes meta-

analysis, accounted for dilution. \ T

Commented [162]: See DocO6a_Meta-analysis, 6a.G.,
page 5

lThere is inconsistency in which model is the best fit at lower exposure levels (eTable 4 and

Commented [163]: See Doc08_Meta-analysis, 8.D., page 3 ‘
and 4

eTable 5) leading to uncertainty in the shape of the dose-response curve at these levels. More individual-

level data would increase our certainty in the shape of the dose-response curve at these lower exposure

levels.\ [There are also several limitations to the existing approaches for evaluating potential for publication

Commented [164]: See Doc03_Meta-analysis, 3.C., page 2 ‘

and 3
bias. The funnel plot asymmetry is a subjective assessment and is recommended only when at least
10 studies are included in the meta-analysis.** Furthermore, the Egger regression test and Begg’s rank
tests>>?” may suffer from inflated type I power and limited power in certain situations.“l Finally, the small ///[ Commented [I65]: See Doc05_Meta-analysis, 5.1, page 9 J

number of studies reporting slopes for association with individual-level exposure data limits the power of

the regression slopes meta-analysis.
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[This meta-analysis complements a larger systematic review® that concluded moderate confidence

in the body of evidence that fluoride exposure is associated with lower IQ in children. Confidence would —{ commented [EAMG66]: See Doc08_Meta-analysis, 8.8.,
page 2.

be increased with additional prospective cohort studies with individual urinary fluoride measures. Studies
conducted in the United States, which as of the writing of this manuscript were not available, would also

be valuable.

Conclusions

[This meta-analysis extends the findings of our larger systematic review that concluded, with
moderate confidence, that higher fluoride exposure is associated with lower children’s IQ. These findings
are consistent with prior meta-analyses and demonstrate that the direction of the association is robust to
stratifications by risk of bias, sex, age group, outcome assessment, study location, exposure timing, and

exposure measurement (including both drinking water and urinary fluoride). Therefore, the consistency of

the data supports an inverse association between fluoride exposure and children’s IQ. __—| Commented [I67]: See DocO6a_Meta-analysis, 6a.C., page
2
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Fluoride Exposure Overall ¥
Reference® Study Age Range Assessment Intelligence RoB Confounde
Study Design Location (Years) (Metric, Exposure Groups) Levels Assessment Rating Considered
Ren et al. (1989)%¢ China 8-14 No fluoride measurement Not specified Wechsler Intelligence High Sex; iodine
[translated in Ren et al. Low iodine village/high fluoride and low Scale for Children \
2008]™me-© iodine village
Cross-sectional
Chen et al. (1991)%® China 7-14 Drinking water 0.89 mg/L (nonendemic) Chinese Standardized High |Age; sex
[translated in Chen et al. Nonendemic/endemic fluorosis village  [4.55 mg/L (endemic) Raven Test
2008]me:
Cross-sectional
Guo et al. (1991)7 China 7-13 Serum 0.1044 + 0.0652 mg/L (reference)  |Chinese Binet High |Age; sex; SES
[translated in Guo et al. Reference area using wood/coal burning- |0.1483 + 0.0473 mg/L (endemic) Intelligence Test
2008a]™e© related fluoride endemic area
Cross-sectional
Lin et al. (1991)%me.o China 7-14 Urine, drinking water Urine: 1.6 mg/L (reference area with |Combined Raven’s High |SES
) Reference area with iodine iodine supplementation) Test for Rural China
Cross-sectional supplementation/high fluoride and low  |2.56 mg/L (high fluoride, low iodine
iodine village village)

Water: 0.34 mg/L (low iodine

village)

0.88 mg/L (high fluoride, low iodine

village)
Sun et al. (1991)72me.© China 6.5-12 No fluoride measurement Fluorosis: 98.36% (endemic) Japan’s Shigeo High |Age
C ectional Nonendemic/endemic (aluminum- Kobgyashi’s 50-point

ross-sectiona fluoride endemic toxicosis) scoring method

An et al. (1992)73me.w China 7-16 Drinking water 0.6—1.0 mg/L (nonhigh) Wechsler Intelligence High |Age; race; SES

Cross-sectional

Nonhigh/high fluoride area

2.1-3.2 mg/L (secondary high)
5.2-7.6 mg/L (high)
2.1-7.6 mg/L (combined high)

Scale for Children-
Revised
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Fluoride Exposure Overall
Reference® Study Age Range Assessment Intelligence RoB Confounders
Study Design Location (Years) (Metric, Exposure Groups) Levels Assessment Rating Considered
Lietal. (1994)% China 12-13 Grain (cooked by burning high-fluoride |0.5 mg/kg (reference group) Proofing test High |Age; sex; SES
[translated in Li et al. coal) 4.7 mg/kg (group I)
2008b]me-© Reference group (no dental 5.2 mg/kg (group II)
. fluorosis)/high fluoride group I (no dental |31.6 mg/kg (group III)
Cross-sectional fluorosis)/high fluoride group II (dental
fluorosis present)/high fluoride group III
(dental fluorosis present)
Xu et al. (1994)74me w* China 8-14 Drinking water 0.8 mg/L (reference region) Binet-Simon Scale High |-
. Reference region/low- and high-fluoride |0.38 mg/L (low fluoride)
Cross-sectional regions® 1.8 mg/L (high fluoride)
Li et al. (1995)75me.0.u China 8-13 Urine, dental fluorosis index (DFI) 1.02 mg/L; DFI: <0.4 (nonfluorosis) [China Rui Wen Scaler High Sex
) Nonfluorosis/fluorosis area due to soot  |1.81 mg/L; DFI: 0.8 (slight fluorosis) |for Rural Areas
Cross-sectional from coal burning 2.01 mg/L; DFI: 2.5 (medium
fluorosis)
2.69 mg/L; DFI: 3.2 (severe
fluorosis)
Wang et al. (1996)7¢ China 4-7 Drinking water (well) 0.58—-1.0 mg/L (low) Wechsler Preschool High |Age; sex
[translated in Wang et al. Low/high fluoride region >1.0-8.6 mg/L (high) and Primary Scale of
2008b]me: oW Fluoride exposure from drinking water, Intelligence
. contaminated food, and coal burning
Cross-sectional
Yao et al. (1996)78mew China 8-12 Drinking water 1 mg/L (nonendemic) Raven Test — High  |lodine; SES
. Nonendemic/endemic fluorosis area 2 mg/L (slightly endemic) Associative Atlas
Cross-sectional 11 mg/L (severely endemic)
Zhao et al. (1996)7mew China 7-14 Drinking water 0.91 mg/L (low) China Rui Wen Scaler High Age; SES
. Low fluoride village (Xinghua)/high 4.12 mg/L (high) for Rural Areas
Cross-sectional fluoride village (Sima)
Yao (1997)80me w* China 7-12 Drinking water 0.4 mg/L (nonfluorosis area) Raven’s Standard High |lodine; SES
. Nonfluorosis area/fluorosis area with 0.33 mg/L (fluorosis area with water |Progressive Matrices
Cross-sectional water improvements/fluorosis area improvement) (China’s Rural
without water improvements 2 mg/L (fluorosis area without water |Version)
improvement)
Zhang et al. (1998)81me China 4-10 Drinking water 0.58 mg/L (reference) Shigeo Kobayashi 50- High |Age; arsenic
o Reference/high fluoride group 0.8 mg/L (high fluoride) pt. test

Cross-sectional

(all observation groups included arsenic
exposure)
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Fluoride Exposure Overall
Reference® Study Age Range Assessment Intelligence RoB Confounders
Study Design Location (Years) (Metric, Exposure Groups) Levels Assessment Rating Considered
Lu et al. (2000)32me. w.u China 10-12 Urine, drinking water Urine: 1.43 + 0.64 mg/L (low) Chinese Combined High SES
onal Lowr/high fluoride area 4.99 +2.57 mg/L (high) Raven Test-C2
Cross-sectiona Water: 0.37 % 0.04 mg/L (low)
3.15+0.61 mg/L (high)
Hong et al. (2001)% China 8-14 Drinking water 0.75 mg/L (reference) Chinese Standardized High lTodine; SES;
[translated in Hong et al. Reference/high fluoride® 2.90 mg/L (high fluoride) Raven Test demographics
2008]me: V"
Cross-sectional
Hong et al. (2001b)3me|  China 8-14 Urine, drinking water Urine: 0.796 + 0.53 mg/L Combined Raven's High |-
o Nonendemic/endemic fluorosis areas (nonendemic) ) Test for Rural China
. (high fluoride, high iodine) 2.09 £ 1.03 mg/L (endemic)
Cross-sectional Water: 0.48 mg/L (nonendemic)
2.81 mg/L (endemic)
Wang et al. (2001)%6me-e|  China 8-12 Urine, drinking water Urine: 0.82 mg/L (low fluoride, low |Combined Raven’s High |-
C sional Reference point (low fluoride, low iodine) ) ) ) Test for Rural China
ross-sectiona iodine)/investigative point (high fluoride, |3-08 mg/L (high fluoride, high
high iodine) iodine)
Water: 0.5 mg/L (low fluoride, low
iodine)
2.97 mg/L (high fluoride, high
iodine)
Li et al. (2003)%” China 6-13 No fluoride measurement Not specified Chinese Standardized High |-

[translated in Li et al.
2008c]me

Cross-sectional

Reference/endemic fluorosis areas

Raven Test
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Reference®
Study Design

Study
Location

Age Range
(Years)

Fluoride Exposure

Assessment
(Metric, Exposure Groups)

Levels

Intelligence
Assessment

Overall
RoB
Rating

Confounders
Considered

Xiang et al. (2003a)*me.

w*, u

Cross-sectional

China

8-13

Urine, drinking water
Nonendemic/endemic fluorosis areas

Urine: 1.11 £ 0.39 mg/L (reference)
3.47 £ 1.95 mg/L (high fluoride)
Water: 0.36 + 0.15 mg/L
(nonendemic)

0.75 £ 0.14 mg/L (endemic fluorosis
area group A)

1.53 +0.27 mg/L (endemic fluorosis
area group B)

2.46 + 0.3 mg/L (endemic fluorosis
area group C)

3.28 £ 0.25 mg/L (endemic fluorosis
area group D)

4.16 + 0.22 mg/L (endemic fluorosis
area group E)

2.47 £0.79 mg/L (high fluoride)

Combined Raven’s
Test for Rural China

Low

Age; sex; iodine; lead;
SES

Wang et al. (2005)8ome.

W, u

Cross-sectional

China

Urine, drinking water
Reference/high fluoride group®

Urine: 1.51 mg/L(reference)
5.09 mg/L (high fluoride group)
Water: 0.48 mg/L (reference)
8.31 mg/L (high fluoride group)

Chinese Combined
Raven Test-C2

High

SES

Seraj et al. (2006)%0me. v

Cross-sectional

Iran

Drinking water
Lowr/high fluoride area

0.4 ppm (low)
2.5 ppm (high)

Raven Test

High

Sex

Wang et al. (2006)°'me

W, u

Cross-sectional

China

Urine, drinking water
Reference/high (area severely affected by
fluorosis)

Urine: 1.51 £ 1.66 mg/L (reference)
5.50 +2.40 mg/L (high)
Water: 0.73 + 0.28 mg/L (reference)
5.54 + 3.88 mg/L (high)

Combined Raven’s
Test for Rural China

High

Fan et al. (2007)%2me. w.u

Cross-sectional

China

7-14

Urine, drinking water
Low/high fluoride area

Urine: 1.78 + 0.46 mg/L (low)
2.89 + 1.97 mg/L (high)
Water: 1.03 mg/L (low)

3.15 mg/L (high)

Chinese Combined
Raven Test-C2

High

Trivedi et al.
(2007)93mc, w,u

Cross-sectional

India

12-13

Urine, drinking water
Low/high fluoride area

Urine: 2.30 + 0.28 mg/L (low)
6.13 £ 0.67 mg/L (high)

Water: 2.01 £+ 0.009 mg/L (low)
5.55+0.41 mg/L (high)

questionnaire prepared
by Professor JH Shah

High

Age; sex
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Fluoride Exposure Overall
Reference® Study Age Range Assessment Intelligence RoB Confounders
Study Design Location (Years) (Metric, Exposure Groups) Levels Assessment Rating Considered
Wang et al. (2007)%me China 8-12 Urine, drinking water Urine: 1.5 £ 1.6 mg/L (low fluoride, |Combined Raven’s High |Age; sex; arsenic; SES
o, w,u Low fluoride, low arsenic/high fluoride, |low arsenic) Test for Rural China
) low arsenic area 5.1 £2.0 mg/L (high fluoride, low
Cross-sectional arsenic)
Water: 0.5 + 0.2 mg/L (low fluoride,
low arsenic)
8.3 £ 1.9 mg/L (high fluoride, low
arsenic)
Li et al.(2009)%5me 0. u* China 8-12 Urine 0.962 + 0.517 mg/L (reference) Combined Raven’s High Age; sex
Cross-sectional Endemic fluorosis region caused by coal |1.235 % 0.426 mg/L (mild) Test for Rural China
ross-sectiona burning (reference/mild/medium/severe) |1.670 +0.663 mg/L (medium)
Degree of dental fluorosis 2336+ 1.128 mg/L (severe)
(normal/suspected/very 0.867 +0.233 mg/L (normal)
mild/mild/medium/severe) 1.094 +0.355 mg/L (suspected)
1.173 + 0.480 mg/L (very mild)
1.637 + 0.682 mg/L (mild)
2.005 + 0.796 mg/L (medium)
2.662 = 1.093 mg/L (severe)
Li et al. (2010)%me China 7-10 No fluoride measurement Not specified Combined Raven’s High  |Sex
. Nondental fluorosis children/dental Test for Rural China
Cross-sectional L
fluorosis children
China 7-14 Dental fluorosis (normal/ 0.80 + 0.55 mg/L (normal) Combined Raven’s Low Age; arsenic; iodine;

Ding et al. (2011)32me.v*

Cross-sectional

questionable/very mild/mild/moderate)
Urine
Mean urinary fluoride levels (10 groups)

1.13 £0.73 mg/L (questionable)
1.11 £ 0.74 mg/L (very mild)
1.31 £ 0.78 mg/L (mild)

1.46 £ 0.79 mg/L (moderate)
0.26 mg/L (group 1)

0.45 mg/L (group 2)

0.56 mg/L (group 3)

0.66 mg/L (group 4)

0.75 mg/L (group 5)

0.89 mg/L (group 6)

1.08 mg/L (group 7)

1.33 mg/L (group 8)

1.74 mg/L (group 9)

2.96 mg/L (group 10)
0.10-3.55 mg/L

Test for Rural China

lead; SES;
demographics
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Fluoride Exposure Overall
Reference® Study Age Range Assessment Intelligence RoB Confounders
Study Design Location (Years) (Metric, Exposure Groups) Levels Assessment Rating Considered
Eswar et al.(2011)%mew India 12-14 Drinking water 0.29 mg/L (low) Standard Progressive High  |Age; sex
Lowr/high fluoride villages 2.45 mg/L (high) Matrices
Cross-sectional
Kang et al. (2011)%me.© China 6-12 Drinking water 1.24 £0.74 mg/L (all children) Chinese Combined High |Age; sex
. Reference/high fluoride areas <1.2 mg/L (reference) Raven Test-C2
Cross-sectional T ) ; .
(both areas with high arsenic exposure) |21.2 mg/L (high fluoride)
Poureslami et al. Iran 7-9 Drinking water 0.41 mg/L (reference) Persian version of High Sex
(2011)%9me.w Reference/endemic dental fluorosis city |2.38 mg/L (endemic) Raven’s Matrices Test
Cross-sectional
Shivaprakash et al. India 7-11 Drinking water <0.5 ppm (no fluorosis) Raven’s Colored High  |Health factors; SES
(2011)100me. w No fluorosis/fluorosis severity groups 2.5-3.5 ppm (mild) Progressive Matrices
) (mild/moderate/severe)/all fluorosis 2.5-3.5 ppm (moderate)
Cross-sectional 2.5-3.5 ppm (severe)
2.5-3.5 ppm (all)
Seraj et al. (2012)*mew Iran 6-11 Drinking water 0.8 + 0.3 mg/L (normal) Raven’s Colored Low  |Age; sex; SES
. Normal/medium/high fluoride levels 3.1 £0.9 mg/L (medium) Progressive Matrices
Cross-sectional 524 1.1 mg/L (high)
Trivedi et al. India 12-13 Urine, ground water Urine: 0.42 + 0.23 mg/L (low) Questionnaire Low Sex; SES
(2012)46me. w.u Low/high fluoride area 2.69 £ 0.92 mg/L (high) prepared by Professor
. Water: 0.84 + 0.38 mg/L (low) JH Shah
Cross-sectional 2.3 +0.87 mg/L (high)
Wang et al. China  |Primary school|No fluoride measurement Not specified Combined Raven’s High |-
(2012b)!01me age Reference/high fluoride areas Test for Rural China
Cross-sectional
Bai et al. (2014)!02me.o China 8-12 Urine 0.54 mg/L (reference) Chinese Combined High SES
) Coal-burning-borne fluorosis areas 0.81 mg/L (lightly-affected area) Raven Test-C2
Cross-sectional (reference/lightly-affected/seriously- 1.96 mg/L (seriously-affected area)
affected)
Karimzade et al. Iran 9-12 Drinking water 0.25 mg/L (low) Iranian version of the High Sex

(20 14)103me. w

Cross-sectional

Low/high fluoride area 3.94 mg/L (high)

Raymond B Cattell
test
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Fluoride Exposure Overall
Reference® Study Age Range Assessment Intelligence RoB Confounders
Study Design Location (Years) (Metric, Exposure Groups) Levels Assessment Rating Considered
Broadbent et al. New 7-13 Drinking water Water: 0.0-0.3 mg/L (low) Wechsler Intelligence High Sex; SES; low birth
(2015)38me. w* Zealand Area without community water 0.7-1.0 mg/L (high) Scale for Children- weight; breastfeeding
Prospective Cohort fluoridation (low)/area with community | Tablet use: 0 mg (never used) Revised
water fluoridation (high) 0.5 mg (ever used)
Fluoride tablet use (never/ever) Range not specified for fluoride
Fluoride toothpaste use toothpaste use
(never/sometimes/always) (always/sometimes/never)
Khan et al. (2015)%me India 6-11 Drinking water 0.19 mg/L (Tiwariganj) Raven’s Colored High |Health factors; SES
onal Low fluoride areas (Tiwariganj)/high 2.41 mg/L (Unnao) Progressive Matrices
Cross-sectiona fluoride areas (Unnao) Ranges not specified by fluorosis
Fluorosis grades (normal/very grades
mild/mild/moderate/severe)
Sebastian and Sunitha India 10-12 Drinking water 0.40 mg/L (low) Raven’s Colored High Age; sex; SES
(2015)!04me. wr Low/normal/high fluoride villages 1.2 mg/L (normal) Progressive Matrices
2.0 mg/L (high)
Cross-sectional
Zhang et al.(2015b)>3™e. China 10-12 Urine, drinking water, serum Urine: 1.10 + 0.67 mg/L (reference) |Combined Raven’s Low Age; sex; arsenic;
WH, U, 1 Reference/high fluoride areas 2.40 £ 1.01 mg/L (high) Test for Rural China iodine; drinking water
) Water: 0.63 (0.58-0.68) mg/L fluoride; SES; thyroid
Cross-sectional (reference) hormone levels;
1.40 (1.23-1.57) mg/L (high) COMT genotype
Serum: 0.06 £ 0.03 (reference)
0.18 +0.11 (high)
Zhang et al. China 7-13 Urine 0.83 +0.71 mg/L (reference) Combined Raven’s High |-

(2015C)105me, o

Cross-sectional

Coal-burning endemic fluorosis area
Reference (no dental fluorosis)/mild
dental fluorosis/moderate dental

fluorosis/critically ill dental fluorosis

1.54 +0.57 mg/L (mildly ill)

2.41 +0.76 mg/L (moderately ill)
3.32 + 1.02 mg/L (critically ill)

Test for Rural China
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Fluoride Exposure Overall
Reference® Study Age Range Assessment Intelligence RoB Confounders
Study Design Location (Years) (Metric, Exposure Groups) Levels Assessment Rating Considered
Das and Mondal India 6-18 Urine, drinking water intake, dental Urine: 2.91 + 1.76 mg/L (normal) Combined Raven’s High |-
(2016)!06me. u ﬂElOrOSiS (normal/questionable/very 2.50 +2.39 mg/L (questionable) Test for Rural China
Cross-sectional mild/mild/moderate/severe) 2.58 + 1.31 mg/L (very mild)
2.95 + 1.44 mg/L (mild)
4.82 +3.57 mg/L (moderate)
3.81 +2.51 mg/L (severe)
Water: 0.069 + 0.021 mg/kg-d
(normal)
0.064 + 0.004 mg/kg-d (questionable)
0.060 + 0.036 mg/kg-d (very mild)
0.060 + 0.030 mg/kg-d (mild)
0.099 + 0.063 mg/kg-d (moderate)
0.093 + 0.040 mg/kg-d (severe)
Mondal et al. India 10-14 Drinking water Not reported (low) Raven Standard High |SES
(2016)!07me.w Lowr/high fluoride areas 0.33-18.08 mg/L (high) Theoretical
Intelligence Test
Cross-sectional
Bashash et al. Mexico 6—12 Maternal urine <0.80 mg/L (reference) Wechsler Abbreviated Low Age; sex; weight at
(2017)3me. uw.rs Reference/high fluoride (based on >0.80 mg/L (high) Scale of Intelligence birth; parity;
. children urinary fluoride) gestational age;
Prospective Cohort maternal characteristics
(smoking history,
marital status, age at
delivery, 1Q, education,
cohort)
Cui et al. (2018)3# China 7-12 Urine Boys: 1.3 (0.9-1.7)¢ mg/L Combined Raven’s Low Age; maternal

Cross-sectional

Girls: 1.2 (0.9-1.6)¢ mg/L

Test for Rural China

education; smoking in
family member; stress;
anger; dopamine
receptor-2
polymorphism
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Fluoride Exposure Overall
Reference® Study Age Range Assessment Intelligence RoB Confounders
Study Design Location (Years) (Metric, Exposure Groups) Levels Assessment Rating Considered
Yu et al. (2018)!1me wv* China 7-13 Maternal urine Urine: 0.01-1.60 mg/L (low) Combined Raven’s Low Age; sex; health
s Low/medium/high fluoride ranges 1.60-2.50 mg/L (medium) Test for Rural China factors; SES
Water: <1 mg/L (normal)
>1 mg/L (high)
Overall: 0.01-5.54 mg/L (urine)
0.20-3.90 mg/L (water)
Zhao et al. (2018)!08me. China 7-12 Urine <2.16 mg/L (reference) Combined Raven’s High |-
° Reference/exposed areas >2.16 mg/L (exposed) Test for Rural China
Cross-sectional All areas with iodine exposure
Green et al. (2019)6me. Canada 34 Maternal urine, drinking water, maternal |Urine: 0.40 + 0.27 mg/L Wechsler Primary and Low  [Sex; city; maternal
W, u¥, 18 fluoride intake (nonfluoridated) Preschool Scale of education;
. Nonfluoridated/fluoridated area 0.69 = 0.42 mg/L (fluoridated) Intelligence-III race/ethnicity; HOME
Prospective Cohort Water: score; prenatal
ater: 0.13 £ 0.06 mg/L
(nonfluoridated) secondhand smoke
0.59 + 0.08 mg/L (fluoridated) exposure
Intake: 0.30 + 0.26 mg/day
(nonfluoridated)
0.93 £ 0.43 mg/day (fluoridated)
Overall: 0.51 £+ 0.36 mg/L (urine)
0.54 + 0.44 mg/day (intake)
0.31 £ 0.23 mg/L (water)
Cui et al. (2020)#7me.u China 7-12 Urine <1.6 mg/L (low) Combined Raven’s Low Sex; arsenic; iodine

Cross-sectional

Low/medium/high fluoride levels

1.6-2.5 mg/L (medium)
>=2.5 mg/L (high)

Test
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Fluoride Exposure Overall
Reference® Study Age Range Assessment Intelligence RoB Confounders
Study Design Location (Years) (Metric, Exposure Groups) Levels Assessment Rating Considered
Till et al. (2020)™ Canada 34 Residence, maternal urine, drinking Urine: 0.38-0.42 mg/L Wechsler Primary and Low  |Age; sex; maternal
water, infant fluoride intake from formula|(nonfluoridated) Preschool Scale of education; maternal
Prospective Cohort Nonfluoridated/fluoridated areas 0.64—0.70 mg/L (fluoridated) Intelligence-I11 race; HOME total
Water: 0.13 mg/L (nonfluoridated) score; secondhand
0.58 mg/L (fluoridated) smoke status in the
Intake: 0.02—-0.08 mg/day child’s house
(nonfluoridated)
0.12-0.34 mg/day (fluoridated)
Wang et al. China 7-12 Urine 0.461 +£0.210 mg/L (nonendemic)  |Combined Raven’s High |Age; sex
(2020c)!0%me; 0 Coal-burning endemic fluorosis area 0.689 + 0.502 mg/L (endemic) Test for Rural China
Cross-sectional Nonendemic/endemic fluorosis regions
Xu et al. (2020)36me, v China 7-13 Urine 0.82 £ 0.30 mg/L (reference) Combined Raven’s Low Age; sex; gestational
s Reference/high prenatal exposure 0.98 + 0.29 mg/L (high prenatal Test for Rural China weeks; maternal
. only/high childhood exposure only/both |exposure only) education level;
Cross-sectional prenatal and childhood exposure group  |2.05 + 0.58 mg/L (high childhood paternal education
exposure only) level; children’s BMI
2.13 £ 0.59 mg/L (both prenatal and
childhood exposure group)
Guo et al., (2021)!10me China 7-12 Urine 1.16 mg/L (reference) Combined Raven’s High |-
. Reference/exposed areas (also with 1.29 mg/L (iodine area 1) Test for Rural China
Cross-sectional - o
iodine exposure) 2.01 mg/L (iodine area 2)
Lou et al. (2021)l llme, o China 8-12 Coal-burning endemic fluorosis area Not specified Wechsler High |-
C o No fluoride measurement Intelligence Scale for
ross-sectional o . o
Nondental fluorosis children/dental Children-Revised in
fluorosis children China (WISC-CR)
Saeed et al. (2021)%™ | Pakistan 5-16 Urine, drinking water Urine: 0.24 + 0.15 mg/L (reference) |Wechsler scale of High Age; sex; parental

0,18

Cross-sectional

Reference/high fluoride areas
Co-exposure with arsenic

3.27 +2.60 mg/L (high)
Water: 0.15 + 0.13 mg/L (reference)
5.64 +3.52 mg/L (high)

intelligence (WISC-
V)

education; dental
fluorosis
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Fluoride Exposure Overall
Reference® Study Age Range Assessment Intelligence RoB Confounders
Study Design Location (Years) (Metric, Exposure Groups) Levels Assessment Rating Considered
Wang et al. (2021)!'2 China 9-11 Drinking water 1.0 £0.07 mg/L (reference) Combined Raven’s High |Age; sex
me, w Reference/high fluoride areas 2.8 £0.06 mg/L (high fluoride) Test
Cross-sectional
Zhao et al. (2021)37rs China 6-11 Urine 1.03 (0.72, 1.47) mg/L Combined Raven’s Low Age; sex; BMI;

Cross-sectional

Nonendemic/endemic fluorosis areas

Test for Rural China

paternal educational
level; maternal
educational level;
household income;
abnormal birth;
maternal age at
delivery

Notes:

COMT = catechol-O-methyltransferase; RoB = risk of bias; SES = socioeconomic status; HOME = Home Observation for Measurement of the Environment

aAn “me” superscript indicates that the studies included in the mean-effects meta-analysis; an “o

" superscript indicates a study included in “other” exposures mean-effects meta-analysis

(see Table 2 footnote); a “w” superscript indicates studies included in the mean-effects dose-response meta-analysis using fluoride in water; a “u” superscript indicates studies included in

the mean-effects dose-response meta-analysis using fluoride in urine; “*” indicates studies included in the mean-effects dose-response meta-analysis at levels < 1.5 mg/L; an

superscript indicates studies included in the regression slopes meta-analysis.
bAdditional exposure regions including iodine levels were not included in the analysis.
cAdditional exposure regions including arsenic levels were not included in the analysis.

dMedian (q1-g3).
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Table ZL Pooled SMDs and 95% Cls for Children’s 1Q Score and Exposures to Fluoride

Cc ted [173]: See DocO6a_Meta-analysis, 6a.E., page

3and 4

Commented [174]: See Doc02_Meta-analysis, 2.X., page 7
and 8

Number of Heterogeneity
Analysis Studies SMD (95% CI) p-value 2
Overall Effect 55 —0.46 (—0.55,-0.37) | <0.001 87%
Subgroup Analyses
Risk of Bias
Low 10 —0.22 (=0.39, —0.05) | <0.001 83%
High 45 —0.52 (-0.63,0.42) | <0.001 86%
Sex
Males 14 —0.62 (-0.81, —0.42) <0.001 78%
Females 13 —0.53 (=0.72, —0.34) <0.001 74%
Age Group
<10 years® 13 —0.41 (-0.60, —0.22) | <0.001 80%
>10 years 16 —0.55 (=0.70, —0.40) <0.001 68%
Country
China 39 —0.43 (=0.52, —0.34) | <0.001 85%
India 8 —0.99 (—-1.55, —0.43) <0.001 93%
Iran 4 —0.68 (=0.99, —0.38) 0.077 56%
Canada 1 0.01 (=0.19, 0.21) NA NA
Mexico 1 0.13 (=0.16, 0.42) NA NA
New Zealand 1 0.01 (—0.19, 0.22) NA NA
Pakistan 1 —0.25 (=0.65, 0.16) NA NA
Assessment Type
CRT-RC tests 29 —0.36 (—0.46, —0.27) | <0.001 82%
Non-CRT-RC tests 26 —0.60 (=0.78, -0.42) | <0.001 89%
Raven’s tests 10 —0.76 (-1.10, —0.43) <0.001 91%
Other tests 16 —0.52 (=0.74,-0.29) | <0.001 89%
Exposure Type
Water fluoride 32 —0.37 (=0.46, —0.27) | <0.001 82%
Dental fluorosis 7 —0.99 (-1.57, -0.41) <0.001 96%
Other exposures® 16 —0.54 (-0.71, —0.37) <0.001 81%
Previous Meta-analyses
Duan et al. (2018)* 26 —0.52 (=0.62, —0.42) <0.001 69%
Choi et al. (2012)? 27 —0.45 (=0.56, —0.34) <0.001 80%

Notes: CI = confidence interval; CRT-RC = Combined Raven’s Test-The Rural edition in China; NA = not applicable;

SMD = standardized weighted mean difference

2An et al. (1992)7 and Li et al. (2010)* include 10-year-old children in the <10 age group (7—10 years reported).
®Includes iodine 40 66 [translated in Ren ctal. 2008], 85, 86, 108, argenic3s 81.94; alJuminum’?; and non-drinking water fluoride (i.e., fluoride
from coal burning*! [manslaed in Li et al. 20085, 70 [ranslated in Guo et al. 2008a], 75, 76 [iransited in Wang et al. 2008b], 89, 95102, 105, 109, 111

¢ p-value for differences between the estimates based on CRT-RC tests vs. non-CRT-RC tests.

4 p-value for differences between the estimates based on CRT-RC tests, Raven’s test and other tests. Note that non-CRT-RC test

include Raven’s tests and other tests.
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Table SH Pooled Regression Slopes and 95% Cls for Children’s 1Q Score and Exposures to Fluoride

Number of Heterogeneity
Analysis Studies Beta (95% CI) p-value | 2
Overall Effect
Full-scale 1Q 9 ~1.81(—2.80,-0.81) | <0.001 | 7%
Subgroup Analyses
Risk of Bias
Low 8 —1.33 (=2.09, —0.57) 0.072 46%
High 1 —3.45 (—4.44, —2.46) NA NA
Sex
Males 2 —2.23 (-5.45, 0.99) 0.092 65%
Females 2 —0.27 (-3.64, 3.10) 0.145 53%
Country
Canada 1 —1.95 (=5.18, 1.28) NA NA
China 6 —1.06 (-1.70, —0.42) 0.191 33%
Mexico 1 ~5.00 (-8.53, —1.47) NA NA
Pakistan 1 —3.45 (—4.44, —2.46) NA NA
Assessment Type
CRT-RC tests 6 —1.06 (—1.70, -0.42) 0.191 33%
Non-CRT-RC tests 3 —3.43 (—4.35,-2.52) 0.457 0%
Exposure Type
Urinary fluoride 9 —1.81 (—2.80, —0.81) <0.001 77%
Intake 2 —3.87 (-7.15,-0.59) 0.737 0%
Water fluoride 2 —4.77 (-9.09, —0.45) 0.707 0%
Exposure timing
Pre-natal exposure 3 —3.08 (-5.43, —0.72) 0.351 5%
Post-natal exposure 7 —1.84 (-2.97, -0.72) <0.001 78%

Notes: CI = confidence interval; NA = not applicable
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Figure 1.

Note: Figure includes 80 epidemiological studies that were identified during the larger systematic review and the November 2021 literature

search update that evaluated the effects of fluoride exposure on children’s 1Q.
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Study Name SMD (95% ClI)

Ren 1989 [translated in Ren 2008] — -0.94  (-1.17,
Chen 1991 [translated in Chen 2008] —e— 026 (-0.41
Guo 1991 [translated in Guo 2008a1] —— -0.44 &—0.80,
Lin 199 1 —e— -0.17  (-0.35,
Sun 1991 —— -093  (-1.13,
An 1992 — -063 (-0.89,
Li 1994 [translated in Li 2005[3} — -0.75 5-1.20,
Xu 199: —! -0.93  (-1.35,
Li 1995 — 082 (-1.01,
Wang 1996 [translated in Wang 2008b] — -0.38 (-0.65,
Yao 1996 —— 046 (-0.71,
Zhao 1996 —e -0.54 (-0.76,
Yao 1997 —— 043 (-061,
Zhang 1998 T -0.17  (-0.56,
Lu 2000 —T -0.62 (-0.98,
Hong 2001 [translated in Hong 2008] — -0.44 (-0.85,
Hong 2001b —— -048 (-0.99,
Wang 2001 —— -0.50 (-1.01,
Li 2003 [translated in Li 2008c] | e -0.10 (-0.25,
Xiang 2003a —e! -0.64 }—0.82,
Wang 2005 L -0.30 (-0.49,
Seraj 2006 —_— -0.89 (-1.28,
Wang 2006 L -027 (-0.47,
Fan 2007 -1 -0.17 ?-0.61,
Trivedi 2007 —_— -1.10  (-1.40,
'ang 2007 — 028 (-0.47,
Li 2009 —_— -050 (-1.12,
Li2010 T -0.07 (-0.22,
Ding 2011 —— -0.04 (-0.45,
Eswar 2011 — -0.18 (-0.5:
Kang 2011 I 0.00 5-0.2 3
Poureslami 2011 — -0.39 (-0.76, 0.
Shivaprakash 2011 —— -0.50 -0.81, -0.
eraj 2012 —— -0.53 (-0.82,
Trivedi 2012 ——— -0.26 (-0.69,
Wang 2012b Lo -0.36  (-0.47,
Bai 2014 —— -0.45 }—0.67,
Karimzade 2014 —_— : -1.23  (-1.92,
Broadbent 2015 e ol 0.01 (-0.19,
Khan 2015 —_— N -5.34 (-6.34,
Sebastian and Sunitha 2015 — -045 (-0.69,
Zhang 2015b — -0.53  (-0.83,
Zhang 2015¢ —_— 1 -1.81  (-2.41,
Das and Mondal 2016 —_— -0.56 -1.63, 0.51
Mondal 2016 —— -0.58 (-1.22, 0.05
Bashash 2017 Lo 0.13  (-0.16, 0.42
Yu 2018 1. -0.08 (-0.15,-0.01
Zhao 2018 —t— -0.37 5-0.61, -0.133
Green 2019 [ = 0.01 -0.19, 0.21
Cui 2020 s -0.18 (-0.52, 0.16)
Wang 2020¢ —! 068 (-0.94.-0.43)
Xu 2020 : —e -0.07 (-0.28, 0.14
Lou 2021 —_— -0.66 (-1.07,-0.25
Saeed 2021 .1 -025 (-0.65, 0.16
Wang 2021 -4 045 (-0.62,-0.28)
Overall * -0.46  (-0.55, -0.37)
-6 -4 2 0

[Figure 2\. Association Between Fluoride Exposure and 1Q Scores in Children 1 € ted [178]: See DocO6b_Meta-analysis, 6b.R.,

page 15 and 16

Note: Forest plot for random-effects meta-analysis of the association between fluoride exposure and child’s 1Q scores. Effect size

is expressed as the standardized weighted mean difference for heteroscedastic population variances (SMD). The random-effects
pooled SMD is shown as a solid triangle. Horizontal lines represent 95% Cls for the study-specific SMDs.
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Additional Detail on Methods
Systematic Literature Review

Literature searches were conducted in the following databases: BIOSIS, EMBASE, PsychINFO, PubMed,
Scopus, Web of Science, CNKI, and Wanfang. Search strategies tailored for each database are available
in the protocol (https://ntp.niehs.nih.gov/go/785076). The last search was performed on May 1, 2020. The
identification of studies for the meta-analysis was part of a larger systematic review.!

Study Selection

lln order to be eligible for inclusion in the systematic literature review, individual study publications
(referred to in this paper as “studies”) had to satisfy eligibility criteria outlined in the protocol (i.e.,
address PECO statement in Table 1 and specific exclusion criteria in Table 2,
https://ntp.niehs‘nih.gov/go/785076).\

The following exclusions were made:
(1) Case studies and case reports.

(2) Articles without original data (e.g., reviews, editorials, commentaries). Reference lists from these
materials, however, were reviewed to identify potentially relevant studies not identified from the
database searches. New studies identified were assessed for eligibility for inclusion.

(3) Conference abstracts or reports and dissertations.

References retrieved from the literature search were independently screened by two trained screeners at
the title and abstract level to determine whether a reference met the evidence selection criteria. Studies
that were not excluded during the title and abstract screening were further screened for inclusion with a
full-text review by two independent reviewers. Translation assistance was obtained to assess the relevance
of non-English studies. Following full-text review, the remaining studies were “included” and used for the
evaluation.

Results of the study identification process are provided in eFigure 1.

Statistical Analysis
Mean-effects meta-analysis

A sensitivity analysis was performed to evaluate the impact of using any exposed group compared to the
reference group. This was accomplished by using the approach outlined in the Cochrane Handbook for
Systematic Reviews? which combines the data from all available exposure groups (n, mean, and standard
deviation [SD]). Subgroup analyses were stratified by risk of bias (high or low), outcome assessment,
exposure matrix (e.g., urine or water), pre- or post-natal exposures, outcome, gender, and age group. If
results were not reported by gender or age-specific subgroups (<10, >10 years), they were calculated (if
possible) by combining smaller subgroups. If SDs were not reported, but mean effects, sample sizes (n
values), and p-values for differences between groups were available, SDs were calculated using the SE
and t-statistic (assuming equal variances). To avoid sample overrepresentation, if the same cohort was
followed at multiple timepoints resulting in multiple study publications (e.g., Yu et al.> and Wang et al.%),
only the study publication that included the largest number of participants was included in the meta-
analysis (see eTable 1 for list of excluded studies and rationales). For studies with overlapping
populations (i.e., multiple study publications that used the same cohort), results from one study
publication were selected considering the following factors: most appropriate exposure metric, exposure
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range, exposure period, number of subjects, and statistical adjustment for potential confounders (see
eTable 2 for study-specific effect estimates used in the meta-analysis).

Dose-response meta-analysis

To determine whether the data support an exposure-response relationship, we conducted a dose-response
mean-effects meta-analysis. This analysis included studies from the mean-effects meta-analysis that
reported fluoride exposure levels; we excluded studies for which there was evidence that co-exposures to
arsenic or iodine might be differential (see eTable 2).

The dose-response meta-analysis was conducted using a one-step approach developed in the protocol
(https://ntp.niehs.nih.gov/go/78500.76).> ¢ The approach uses linear mixed models to analyze all available
mean effect estimates for the reference group and one or more of the non-reference exposure groups. For
each study, the median or mean fluoride level for each exposure group was assigned to its corresponding
effect estimate. [If median or mean levels by exposure group were not provided, the midpoint of the upper
and lower boundaries in every exposure category was assigned as the average level. If the upper boundary
for the highest exposure group was not reported, the boundary was assumed to have the same amplitude
as the nearest exposure category.\ For each study, the SMDs and corresponding SEs were used to compare

the differences in mean 1Q between the exposed and reference groups. The corresponding SMD for the
reference group was set to zero for this analysis. The SMDs and corresponding variances were used to
estimate a pooled dose-response curve using a restricted maximum likelihood estimation method. To
examine a potential nonlinear relationship between exposure to fluoride and children’s IQ levels,
quadratic terms and restricted cubic splines were created, and a potential departure from a linear trend
was assessed by testing the coefficient of the quadratic term and a second spline equal to zero. Models
were compared and the best model fit was determined based on the maximum likelihood Akaike
information criterion (AIC).” The AIC is a goodness-of-fit measure that adjusts for the number of
parameters in the model, and lower AIC values indicate better fitting models. Models using a pooled
dose-response curve using a restricted maximum likelihood estimation method and a maximum likelihood
method were also reported (eTable4 and eTable 5, respectively).

To examine whether there were effects at lower levels of exposure, we conducted sub-group analyses for
both drinking water and urinary fluoride measures. Analyses were restricted to <4 mg/L, the EPA’s
current enforceable drinking water standard for fluoride; <2 mg/L, the EPA’s non-enforceable secondary
standard for fluoride in drinking water;® and <1.5 mg/L, the WHO’s guideline for fluoride in drinking
water.’

Results
Study Sample

Results of the study identification process are provided in eFigure 1. Characteristics of the 55 studies that
compared mean IQ scores between groups of children with different levels of fluoride exposure are
shown in Table 1 of the main publication (see eTable 1 for list of excluded publications). Study-specific
effect estimates used in the meta-analyses are presented in eTable 2. One study per country was
conducted in New Zealand, Mexico, Pakistan, and Canada; 4 studies were conducted in Iran, 8 studies
were conducted in India, and the remaining 39 studies were performed in China (see Table 1 of the main
publication). Nine study populations were exposed to fluoride from coal burning!? [translated in Guo et al. 2008a], 12
[translated in Li et al. 2008], 14-16,17-19. o therwise, it is assumed that study populations were exposed to fluoride
primarily through drinking water. Measures of fluoride exposure included water fluoride (n = 32 studies),
dental fluorosis (n = 7), and other non-drinking water sources of exposure to fluoride (e.g., fluoride
exposure from coal burning [n = 16]). Fourteen studies presented results for boys and 13 studies reported
results for girls; children < 10 years old and children > 10 years old were examined in 13 and 16 studies,
respectively (Table 2). The Combined Raven’s Test for Rural China (CRT-RC) was used to measure
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children’s IQ in 29 studies. Other measures of IQ included the Wechsler intelligence tests,20 [ranslated in Ren et
al. 2008], 22 [translated in Wang et al. 2008b], 24, 25 Binet IQ teSth [translated in Guo et al. 2008a], 26, Raven’s Standard Progressive

Matrices test,”’*° Raymond B Cattell test,’” Japan IQ test,*® * Index of Mental Capacity, ' [renslated in Li et al.
2008) and other tests using a doctor-prepared questionnaire.*®*' There were 10 low risk-of-bias studies and
45 high risk-of-bias studies (https://hawcproject.org/summary/visual/assessment/405/Figure-X-Meta-

analysis-RoB/).
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References identified

Identified

References identified

through other 15 through database 43,412
sources”® searches”
References after
duplicate removal Title-
abstract screened for 27,437
relevance and eligibility
o
g l
o v
2
o Full-text references assessed for relevance and
& eligibility 1,143
Children's 1Q*** 96
-
% Included in Meta-analysis 59
3
Q
< |
Dose- Regression
k}e?n—eﬂﬁclﬁ response 36 Slopes Meta- 10
ela-analysis Meta-analysis analysis

eFigure 1. Prisma Flow Diagram of Study Inclusion

Title-abstract references excluded

Total
T-A References excluded based on SWIFT algorithm
T-A References excluded for pre-established criteria

Full text references excluded

Total
Pre-established criteria, with reasons™
Population not relevant
Exposure not relevant
Comparator not relevant
Outcome not relevant
Supporting information (e.g., exposure, ADME studies, reviews)
Retracted
Other (e.g., abstracts, commentaries, editorials)
Excluded from quantitative analysis

Animal in vivo and/or mechanistic-only studies

Human other primary outcome, adult, secondary outcome-only, or mechanistic studies

Non-English language human studies not translated

Excluded from meta-analysis
Excluded from all analyses
Excluded from main analyses but included in sensitivity analyses
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26,309
13,023
13,286

1,047
377

38
28
76
100

126
670
563
103

37
30



*This information was part of a larger systematic review effort resulting in many studies in the search strategy and PRISMA that were not considered for meta-analysis.
**Studies may have been excluded for more than one reason. The first one identified by the screener was recorded.

*#* For the purpose of this PRISMA figure, the Children’s IQ count includes three publications*?** based on subsamples (i.¢., 50-60 children) of a larger Yu et al.? cohort. These
three publications are not included in the meta-analysis and are not displayed in Figure 1 in the main publication.
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[eTable 1\. List of Excluded Studies from Mean-effects Meta-analysis

_—1 Cc

Reference, Country

Reason for Exclusion

and 7), 5.G. (page 8), and 5.M. (page 11)

Qin et al. (1990)* [translated in Qin et
al. 2008], China

Missing mean or SD of outcome measure

Yang et al. (1994)¥ [translated in Yang
et al. 2008], China

Overlapping population with Wang et al. (2001)*; Table 2 in Yang et al.
(1994)*" seemed incomplete

Wang et al. (2005b)* [translated in
Wang et al. 2008a], China

Missing mean or SD of outcome measure

Rocha-Amador et al. (2007)°2, Mexico

Missing mean or SD of outcome measure

Liu et al. (2000) [translated in Liu et
al. 2008] , China

Overlapping population with Lu et al. (2000)*

Sudhir et al. (2009)°°, India

Missing mean or SD of outcome measure

He and Zhang (2010)*’, China

Missing mean or SD of outcome measure

Xiang et al. (2011)°%, China

Overlapping population with Xiang et al. (2003a)*°

Saxena et al. (2012)%, India

Missing mean or SD of outcome measure

Wang et al. (2012)°!, China

Overlapping population with Xiang et al. (2003a)%

Nagarajappa et al. (2013)%, India

Seguin Foam Board test; due to the test measuring eye-hand coordination
and cognitive-perceptual abilities

Pratap et al.(2013)%, India

Missing mean or SD of outcome measure

Asawa et al. (2014)%, India

Seguin Foam Board test; due to the test measuring eye-hand coordination
and cognitive-perceptual abilities

Wei et al. (2014)%, China

Missing mean or SD of outcome measure

Choi et al. (2015)%, China

Cognitive functions other than IQ

Kundu et al. (2015)%7, India

Unusual 1Q scores based on Raven’s Standardized Progressive Matrices
Test; used only for sensitivity analysis for the mean-effects meta-analysis

Aravind et al. (2016)%, India

Unusually low IQ scores Raven’s Standardized Progressive Matrices Test;
used only for sensitivity analysis for the mean-effects meta-analysis

Jin et al.(2016)*°, China

Cognitive functions other than I1Q; potential overlap with Zhang et al.
(2015¢)™

Kumar et al. (2016)”', India

Seguin Foam Board test; due to the test measuring eye-hand coordination
and cognitive-perceptual abilities

Jin et al.(2017)72, China

Overlap with Jin et al. (2016)%; unusual IQ scores reported as percentiles

Razdan et al. (2017)7, India

Unusually low 1Q scores based on Raven’s Standardized Progressive
Matrices Test; used only for sensitivity analysis for the mean-effects meta-
analysis

Valdez Jiménez et al. (2017)7*, Mexico

Bayley tests; used only for sensitivity analysis for the regression slopes
meta-analysis

Wang et al. (2017)7°, China

Overlapping population with Xiang et al. (2003a)*°
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Reference, Country

Reason for Exclusion

Cui et al. (2018)7°, China

Missing mean or SD of outcome measure; used in regression slopes meta-
analysis

Luo et al. (2018)7, China

Overlapping population with Lou et al. (2021)"°

Naik et al. (2018)7%, India

Missing sample sizes by exposure groups. Missing mean and SD for IQ
scores

Sharma et al.(2018)7, India

Missing mean and SD for IQ scores

Soto-Barreras et al. (2019)%, Mexico

Missing mean or SD of outcome measure

Zhao et al. (2019)®, China

Overlapping population with Yu et al. (2018)%, but smaller sample size

Zhou et al. (2019)*, China

Overlapping population with Yu et al. (2018)?, but smaller sample size

Till et al.(2020)%!, Canada

Missing mean or SD of outcome measure; used in regression slopes meta-
analysis

Wang et al. (2020b)*, China

Missing mean or SD of outcome measure; used in sensitivity analysis for
the regression slopes meta-analysis

Zhao et al. (2020)*, China

Overlapping population with Yu et al. (2018)?, but smaller sample size

Aggeborn and Ohman (2021)%2, Sweden

Cognitive functions other than IQ; cognitive test not specified

Cantoral et al. (2021)%, Mexico

Bayley tests; used only for sensitivity analysis for the regression slopes
meta-analysis

Farmus et al. (2021)%, Canada

Same data as Till et al.(2020)®!

Guo et al. (2021)%, China

Overlapping population with Zhao et al. (2018),% but smaller sample size;
excluded from overall mean-effects meta-analysis but used in mean-effects
subgroup meta-analysis by age group

Ibarluzea et al. (2021)%, Spain

Bayley and McCarthy tests; used only for sensitivity analysis for the mean-
effects meta-analysis, dose-response meta-analysis, and regression slopes
meta-analysis

Wang et al. (2021b)*, China

Overlapping population with Wang et al. (2021)%’; cognitive functions
other than 1Q

Yu et al. (2021)*, China

Overlapping population with Yu et al. (2018)%, but smaller sample size

Zhao et al. (2021)"', China

Missing mean or SD of outcome measure; used in regression slopes meta-
analysis

Zhou et al. (2021)°?, China

Overlapping population with Yu et al. (2018)?, but smaller sample size
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[eTable ZL Study Characteristics and Study-specific Effect Estimates Included in the Meta-analyses and Sensitivity Analyses

Mean-effects
Meta-analysis

Dose-response
Mean-effects Meta-
analysis

Regression Slopes
Meta-analysis

~| Commented [I14]: See Doc05_Meta-analysis, 5.E. (pages 6

and 7) and 5.K. (page 10)

( 1 992)24mc, w

Cross-sectional

Nonhigh/high fluoride
area

2.1-3.2 mg/L (secondary high)
5.2-7.6 mg/L (high)
2.1-7.6 mg/L (combined high)

121, 75.90 (13.60)

56,76.10 (13.90)
65,75.60 (13.30)

Age Assessment N, Mean (SD) N, Mean (SD) Slope (SE) or 95% CI
Reference® Study | Range | (Metric, Exposure [Reference] [Reference] per Unit Change
Study Design | Location | (Years) Groups) Fluoride Exposure Levels [Exposed] [Exposed] Fluoride Source
Ren et al. (1989)*°|  China 8-14 |No fluoride measurement |Not specified 169, 85.00 (22.30) Subjects,
[translated in Ren Low iodine village/high 160, 64.80 (20.40) Methods,
et al. 2008]™me-© fluoride and low iodine Results section
ill
Cross-sectional vitlage
Chen et al. China 7-14  |Drinking water 0.89 mg/L (nonendemic) 320, 104.03 (14.96) 320, 104.03 (14.96) Results section,
(1991)% Nonendemic/endemic 4.55 mg/L (endemic) 320, 100.24 (14.52) |320, 100.24 (14.52) Table 1
[translated in fluorosis village
Chen et al.
2008]me: W
Cross-sectional
Guo et al. China 7-13  |Serum 0.1044 £ 0.0652 mg/L (reference) 61,81.39(10.26) Calculated by
(1991)0 Reference area using 0.1483 +0.0473 mg/L (endemic) 60, 76.71 (10.85) ICF
[translated in Guo wood/coal burning-related
et al. 2008a]™e© fluoride endemic area
Cross-sectional
Lin et al. China 7-14  |Urine, drinking water Urine: 1.6 mg/L (reference area with 256, 78.00 (40.07) Calculated by
(1991)?3me. Reference area with iodine [iodine supplementation) 250, 71.00 (40.07) ICF
) . supplementation/high 2.56 mg/L (high fluoride, low iodine
Cross-sectional fluoride and low iodine village)
village Water: 0.34 mg/L (low iodine village)
0.88 mg/L (high fluoride, low iodine
village)
Sun et al. China 6.5-12 |No fluoride measurement |Fluorosis: 98.36% (endemic) 224, 82.68 (10.91) Calculated by
(1991)38me. 0 Nonendemic area/endemic 196, 72.35 (11.36) ICF
. (aluminum-fluoride
Cross-sectional . s
endemic toxicosis)
Anetal. China 7-16  |Drinking water 0.6—1.0 mg/L (nonhigh) 121, 84.00 (12.10) 121, 84.00 (12.10) Table 1, Table

2
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Mean-effects

Dose-response
Mean-effects Meta-

Regression Slopes

Meta-analysis analysis Meta-analysis
Age Assessment N, Mean (SD) N, Mean (SD) Slope (SE) or 95% CI
Reference® Study | Range | (Metric, Exposure [Reference] [Reference] per Unit Change
Study Design | Location | (Years) Groups) Fluoride Exposure Levels [Exposed] [Exposed] Fluoride Source
Lietal. (1994)2 China 12-13 |Grain (cooked by burning [0.5 mg/kg (reference group) 49, 267.20 (39.50) Table 1
[translated in Li et high-fluoride coal) 4.7 mg/kg (group I) 36, 240.00 (30.80)
al. 2008b]™me-© Reference group (no 5.2 mg/kg (group II)
3 . dental fluorosis)/high 31.6 mg/kg (group IIT)

Cross-sectional fluoride group I (no dental

fluorosis)/high fluoride

group II (dental fluorosis

present)/high fluoride

group III (dental fluorosis

present)
Xuetal. China 8-14 |Drinking water 0.8 mg/L (reference region) 32,83.83(9.10) 32,83.83(9.10) Chart 1
(1994)26me, w Reference region/low- and [0.38 mg/L (low fluoride) 97,79.25 (2.25) 21,80.21 (8.27)

. high-fluoride regions® 1.8 mg/L (high fluoride) 97.7925 (2.25

Cross-sectional ,79.25 (2.25)
Liet al. China 8-13 |Urine, dental fluorosis 1.02 mg/L; DFI: <0.4 (nonfluorosis) |226, 89.90 (10.40) 226, 89.90 (10.40) Table 2
(1995)!4me. o.u index (DFI) 1.81 mg/L; DFI: 0.8 (slight fluorosis) (230, 80.30 (12.90) 227, 89.70 (12.70)
Cross-sectional Nonfluorosis/fluorosis 2.01 mg/L; DFI: 2.5 (medium 224, 79.70 (12.70)

area due to soot from coal |fluorosis) 230. 8030 (12.90

burning 2.69 mg/L; DFI: 3.2 (severe fluorosis) , 80.30 (12.90)
Wang et al. China 4-7  |Drinking water (well) 0.58—1.0 mg/L (low) 83,101.23 (15.84) 83,101.23 (15.84) Table 1
(1996)? Lowrhigh fluoride regions [>1.0—8.6 mg/L (high) 147,95.64 (14.34)  |147, 95.64 (14.34)
[translated in Fluoride exposure from
Wang et al. drinking water,
2008b]™e- W contaminated food, and
Cross-sectional coal burning
Yao et al. China 8-12 |Drinking water 1 mg/L (nonendemic) 270, 98.46 (13.21)  |270, 98.46 (13.21) Table 2
(1996)28me. w Nonendemic/endemic 2 mg/L (slightly endemic) 78,92.53 (12.34) 188, 94.89 (11.15)
Cross-sectional fluorosis areas 11 mg/L (severely endemic) 78, 92.53 (12.34)
Zhao et al. China 7-14  |Drinking water 0.91 mg/L (low) 160, 105.21 (14.99) |160, 105.21 (14.99) Table 1

( 1 996)96mc, w

Cross-sectional

Low fluoride village
(Xinghua)/high fluoride
village (Sima)

4.12 mg/L (high)

160, 97.69 (13.00)

160, 97.69 (13.00)
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Mean-effects

Dose-response
Mean-effects Meta-

Regression Slopes

Meta-analysis analysis Meta-analysis
Age Assessment N, Mean (SD) N, Mean (SD) Slope (SE) or 95% CI
Reference® Study | Range | (Metric, Exposure [Reference] [Reference] per Unit Change
Study Design | Location | (Years) Groups) Fluoride Exposure Levels [Exposed] [Exposed] Fluoride Source
Yao (1997)27me w* China 7-12  |Drinking water 0.4 mg/L (nonfluorosis area) 314,99.98 (12.21) 314,99.98 (12.21) Section 2.1
Cross-sectional Nonﬂqoros1s/ﬂuor051s 9.33 mg/L (fluorosis area with water 183, 94.89 (11.15) {326, 97.83 (11.27) Intelligence
area with water improvement) 183, 94.89 (11.15) Tests, page 2
improvements/fluorosis |2 mg/L (fluorosis area without water T '
area without water improvement)
improvements
Zhang et al. China 4-10 |Drinking water 0.58 mg/L (reference) 52, 87.69 (11.04) Table 1
(1998)3me. Reference/high fluoride  [0.8 mg/L (high fluoride) 51,85.62 (13.23)
Cross-sectional group .
(all observation groups
included arsenic exposure)
Luetal. China 10-12 |Urine, drinking water Urine: 1.43 £ 0.64 mg/L (low) 58,103.05 (13.86) |58, 103.05 (13.86) Table 1
(2000)35me, w.u Low/high fluoride area  [4.99 +2.57 mg/L (high) 60, 92.27 (20.45) 60, 92.27 (20.45)
Cros ional Water: 0.37 + 0.04 mg/L (low)
ross-sectiona 3.15+0.61 mg/L (high)
Hong et al. China 8-14 |Drinking water 0.75 mg/L (reference) 32,82.79 (8.98) 32,82.79 (8.98) Table 2
(2001)*7 Reference/high fluoride® |2.90 mg/L (high fluoride) 85, 80.58 (2.28) 85, 80.58 (2.28)
[translated in
Hong et al. 2008]
me, w
Cross-sectional
Hong et al. China 8-14 |Urine, drinking water Urine: 0.796 + 0.53 mg/L 30, 80.66 (11.93) 31, Table 3, Table
(2001b)*me. Nonendemic/endemic (nonendemic) 75.89 (7.74) 4
. fluorosis areas (high 2.09 + 1.03 mg/L (endemic)
Cross-sectional : AR : : 2
fluoride, high iodine) Water: 0.48 mg/L (nonendemic)
2.81 mg/L (endemic)
Wang et al. China 8-12 |Urine, drinking water Urine: 0.82 mg/L (low fluoride, low (30, 81.67 (11.97) Table 2

(200 1 )49,mc‘ o

Cross-sectional

Reference point (low
fluoride, low

iodine)/investigative point

(high fluoride, high
iodine)

iodine)

3.08 mg/L (high fluoride, high iodine)
Water: 0.5 mg/L (low fluoride, low
iodine)

2.97 mg/L (high fluoride, high iodine)

30, 76.67 (7.75)
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Mean-effects

Dose-response
Mean-effects Meta-

Regression Slopes

Meta-analysis analysis Meta-analysis
Age Assessment N, Mean (SD) N, Mean (SD) Slope (SE) or 95% CI
Reference® Study | Range | (Metric, Exposure [Reference] [Reference] per Unit Change
Study Design | Location | (Years) Groups) Fluoride Exposure Levels [Exposed] [Exposed] Fluoride Source
Li et al. (2003)'% China 6-13  |No fluoride measurement |Not specified 236, 93.78 (14.30) Table 1
[translated in Li et Reference/endemic 720, 92.07 (17.12)
al. 2008c]™me fluorosis areas
Cross-sectional
Xiang et al. China 8-13 |Urine, drinking water Urine: 1.11 £ 0.39 mg/L (reference) (290, 100.41 (13.21) {290, 100.41 (13.21) Table 6, Table
(2003a)>%me. w*u Nonendemic/endemic 3.47 +£1.95 mg/L (high fluoride) 222,92.02 (13.00) |9, 99.56 (14.13) 8
Cross-sectional fluorosis areas Water: 0'364 £0.15 mg/L 42,9521 (12.22)
E)n;)Sneingelr?‘w) /L (cadernic £ ) 111, 92.19 (12.98)
. .14 mg/L (endemic fluorosis
area group A) 52,89.88 (11.98)
1.53 +£0.27 mg/L (endemic fluorosis 8,78.38 (12.68)
area group B)
2.46 + 0.3 mg/L (endemic fluorosis
area group C)
3.28 +£0.25 mg/L (endemic fluorosis
area group D)
4.16 £ 0.22 mg/L (endemic fluorosis
area group E)
2.47 +£0.79 mg/L (high fluoride)
Wang et al. China 8-12 |Urine, drinking water Urine: 1.51 mg/L(reference) 196, 112.36 (14.87) |196, 112.36 (14.87) Table 1
(2005)!02.me, w,u Reference/high fluoride  |5.09 mg/L (high fluoride group) 253,107.83 (15.45) |253, 107.83 (15.45)
Cross-sectional group* Water: 0.48 mg/L (reference)
8.31 mg/L (high fluoride group)
Seraj et al. Iran 7-11 |Drinking water 0.4 ppm (low) 85, 98.90 (12.90) 85, 98.90 (12.90) Methodology,
(2006)?%me. w Low/high fluoride area  |2.5 ppm (high) 41, 87.90 (11.00) 41, 87.90 (11.00) Findings
b ional section (Text
ross-sectiona under Table 2)
Wang et al. China 8-12 |Urine, drinking water Urine: 1.51 + 1.66 mg/L (reference) |166, 111.55 (15.19) {166, 111.55 (15.19) Table 2

(2006) 103,me, w, u

Cross-sectional

Reference/high (area
severely affected by
fluorosis)

5.50 +2.40 mg/L (high)
Water: 0.73 + 0.28 mg/L (reference)
5.54 +3.88 mg/L (high)

202, 107.46 (15.38)

202, 107.46 (15.38)
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Mean-effects

Dose-response
Mean-effects Meta-

Regression Slopes

Meta-analysis analysis Meta-analysis
Age Assessment N, Mean (SD) N, Mean (SD) Slope (SE) or 95% CI
Reference® Study | Range | (Metric, Exposure [Reference] [Reference] per Unit Change
Study Design | Location | (Years) Groups) Fluoride Exposure Levels [Exposed] [Exposed] Fluoride Source
Fan et al. China 7-14  |Urine, drinking water Urine: 1.78 + 0.46 mg/L (low) 37,98.41 (14.75) 37,98.41 (14.75) Table 1
(2007)!04me, w,u Low/high fluoride area 2.89 + 1.97 mg/L (high) 42,96.11 (12.00) 42,96.11 (12.00)
N Water: 1.03 mg/L (low)
Cross-sectional
ross-sectiona 315 mg/L (hlgh)
Trivedi et al. India 12-13 |Urine, drinking water Urine: 2.30 + 0.28 mg/L (low) 101, 104.44 (12.36) |101, 104.44 (12.36) Table 2
(2007)#tme. w.u Lowr/high fluoride area 6.13 +£0.67 mg/L (high) 89,91.72 (10.66) 89,91.72 (10.66)
) ; Water: 2.01 £ 0.009 mg/L (low)
Cross-sectional
rosssectiond 5.55+0.41 mg/L (high)
Wang et al. China 8-12 |Urine, drinking water Urine: 1.5 + 1.6 mg/L (low fluoride, |196, 104.80 (14.70) |196, 104.80 (14.70) Table 2, Table
(2007)!05me, 01w Low fluoride, low low arsenic) 253, 100.50 (15.80) [253, 100.50 (15.80) 3
Cross-sectional arsenic/high fluoride, low |5.1 2.0 mg/L (high fluoride, low
ross-sectiona arsenic area arsenic)
Water: 0.5 = 0.2 mg/L (low fluoride,
low arsenic)
8.3 + 1.9 mg/L (high fluoride, low
arsenic)
Lietal. China 8-12 |Urine 0.962 + 0.517 mg/L (reference) 20, 102.70 (17.61) |20, 102.70 (17.61) Table 1
(2009)!3:me. - v Endemic fluorosis region |1.235 % 0.426 mg/L (mild) 20,93.85(18.11) |20, 97.30 (18.56)
. i 1.670 £ 0.663 mg/L (medium)
Cross-sectional caused by coal burning 20, 93.90 (17.60)
rossection (reference/mild/medium ~ |2-336+ 1128 mg/L (severe) 20,93.85 (18.11)
/severe) 0.867 +0.233 mg/L (normal) T '
Degree of dental fluorosis [1.094 + 0.355 mg/L (suspected)
(normal/suspected/ very  |1.173 £ 0.480 mg/L (very mild)
mild/mild/medium/ 1.637 £+ 0.682 mg/L (mild)
severe) 2.005 £ 0.796 mg/L (medium)
2.662 +1.093 mg/L (severe)
Lietal China 7-10  |No fluoride measurement |Not specified 329,97.36 (18.24) Table 3

(201 0)106,me

Cross-sectional

Nondental fluorosis
children/dental fluorosis
children

347,98.73 (21.07)
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Mean-effects

Dose-response
Mean-effects Meta-

Regression Slopes

Meta-analysis analysis Meta-analysis
Age Assessment N, Mean (SD) N, Mean (SD) Slope (SE) or 95% CI
Reference® Study | Range | (Metric, Exposure [Reference] [Reference] per Unit Change
Study Design | Location | (Years) Groups) Fluoride Exposure Levels [Exposed] [Exposed] Fluoride Source
Ding et al. China 7-14  |Dental fluorosis (normal/ |0.80 + 0.55 mg/L (normal) 136, 104.07 (12.30) |136, 104.07 (12.30) —0.59 (—-1.09,-0.08) per 1 |Table 2,
(2011)107.me, u*,rs questionable/very 1.13 +£0.73 mg/L (questionable) 28,103.54 (13.59) |54, 103.00 (16.10) mg/L urinary F Section 3
e mild/mild/ moderate) 1.11 +£0.74 mg/L (very mild) 74.102.11 (15.05 Results and
Cross-sectional Urine 1.31 +0.78 mg/L (mild) 39’ 106-03 (12'33) discussion
Mean urinary fluoride 1.46 + 0.79 mg/L (moderate) - 106.03 (12.33) (under Fig. 2)
levels (10 groups) 0.26 mg/L (group 1) 28, 103.54 (13.59)
0.45 mg/L (group 2)
0.56 mg/L (group 3)
0.66 mg/L (group 4)
0.75 mg/L (group 5)
0.89 mg/L (group 6)
1.08 mg/L (group 7)
1.33 mg/L (group 8)
1.74 mg/L (group 9)
2.96 mg/L (group 10)
Range: 0.10-3.55 mg/L
Eswar et al. India 12-14 |Drinking water 0.29 mg/L (low) 65, 88.80 (15.30) 65, 88.80 (15.30) Table 1
(2011)31mew Lowr/high fluoride villages |2.45 mg/L (high) 68, 86.30 (12.80) 68, 86.30 (12.80)
Cross-sectional
Kang et al. China 6-12 |Drinking water 1.24 £ 0.74 mg/L (all children) 90, 96.8 (12.7) Table 1.
(2011)!08me.o Reference/high fluoride  |<1.2 mg/L (reference) 178, 96.8 (16.3) Section 2.1
Cross-sectional areas >1.2 mg/L (high fluoride)
(both areas high arsenic
exposure)
Poureslami et al. Iran 7-9  |Drinking water 0.41 mg/L (reference) 60, 97.80 (15.95) 60, 97.80 (15.95) Table 3, Results
(2011)32me. w Reference/endemic dental 2.38 mg/L (endemic) 59,91.37 (16.63) 59,91.37 (16.63) section (under
X fluorosis city Table 3)
Cross-sectional
Shivaprakash et India 7-11 |Drinking water <0.5 ppm (no fluorosis) 80, 76.36 (20.84) 80, 76.36 (20.84) Table 1

al. (201 1y3me.w

Cross-sectional

No fluorosis/fluorosis
severity groups
(mild/moderate/
severe)/all fluorosis

2.5-3.5 ppm (mild)
2.5-3.5 ppm (moderate)
2.5-3.5 ppm (severe)
2.5-3.5 ppm (all)

80, 66.63 (18.09)

80, 66.63 (18.09)

Page 15




Mean-effects

Dose-response
Mean-effects Meta-

Regression Slopes

Meta-analysis analysis Meta-analysis
Age Assessment N, Mean (SD) N, Mean (SD) Slope (SE) or 95% CI
Reference® Study | Range | (Metric, Exposure [Reference] [Reference] per Unit Change
Study Design | Location | (Years) Groups) Fluoride Exposure Levels [Exposed] [Exposed] Fluoride Source
Seraj et al. Iran 6-11 |Drinking water 0.8 £ 0.3 mg/L (normal) 91,97.77 (18.91) 91,97.77 (18.91) Table 2
(2012)30:me. w Normal/medium/high 3.1 +£0.9 mg/L (medium) 96, 88.58 (16.01) 106, 89.03 (12.99)
Cross-sectional fluoride levels 5.2+ 1.1 mg/L (high) 96, 88.58 (16.01)
Trivedi et al. India 12-13 |Urine, ground water Urine: 0.42 £ 0.23 mg/L (low) 50,97.17 (17.96) 50,97.17 (17.96) Table 3, Results
(2012)%0:me, w.u Low/high fluoride area 2.69 +0.92 mg/L (high) 34,92.58 (18.25) 34,92.58 (18.25) section (above
, : Water: 0.84 = 0.38 mg/L (low) Table 3)
Cross-sectional
ross-sectiona 2.3 +0.87 mg/L (high)

Wang et al. China Primary |No fluoride measurement |Not specified 455, 98.36 (14.56) Table 1
(2012b)!09me school |Reference/high fluoride 800, 92.21 (18.45)
Cross-sectional ¢ |areas
Bai et al. China 8-12 |Urine 0.54 mg/L (reference) 164,107.92 (13.62) Table 2
(2014)!6me0 Coal-burning-borne 0.81 mg/L (lightly-affected area) 162,101.22 (15.97)
Cross-sectional fluorosis areas 1.96 mg/L (seriously-affected area)

(reference/lightly-

affected/seriously-

affected)
Karimzade et al. Iran 9-12 |Drinking water 0.25 mg/L (low) 20, 104.25 (20.75) 20, 104.25 (20.75) Table 1

(2014)37,mc. w

Cross-sectional

Low/high fluoride area

3.94 mg/L (high)

19,8121 (16.17)

19,8121 (16.17)
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Mean-effects

Dose-response

Mean-effects Meta-

Regression Slopes

Meta-analysis analysis Meta-analysis
Age Assessment N, Mean (SD) N, Mean (SD) Slope (SE) or 95% CI
Reference® Study | Range | (Metric, Exposure [Reference] [Reference] per Unit Change
Study Design | Location | (Years) Groups) Fluoride Exposure Levels [Exposed] [Exposed] Fluoride Source

Broadbent et al. New 7-13  |Drinking water Water: 0.0-0.3 mg/L (low) 99, 99.80 (14.50) 99, 99.80 (14.50) Table 1
(2015)25:me. v Zealand Area without community [0-7-1.0 mg/L (high) 891, 100.00 (15.10) {891, 100.00 (15.10)
Prospective water ﬂuoridgtion Tablet use: 0 mg (never used)
Cohort (low)/area with 0.5 mg (ever used)

comrpun?ty wqter Range not specified for fluoride

fluoridation (high) toothpaste use

Fluoride tablet use (always/sometimes/never)

(never/ever)

Fluoride toothpaste use

(never/sometimes/always)
Khan et al. India 6-11 |Drinking water 0.19 mg/L (Tiwariganj) 241, 110.10 (9.00) Table/Fig-5
(2015)34me Low fluoride areas 2.41 mg/L (Unnao) 5, 62.40 (2.40)

. (Tiwariganj)/high fluoride Ranges not specified by fluorosis

Cross-sectional areas (Unnao) grades

Fluorosis grades

(normal/very

mild/mild/moderate/severe

)
Kundu et al. India 8—12 |Drinking water Not specified 100, 85.80 (18.85) Table 2
(2015)67 Low fluoride areas/high 100, 76.20 (19.10)
Cross-sectional fluoride areas
Sebastian and India 10-12 |Drinking water 0.40 mg/L (low) 135, 86.37 (13.58) 135, 86.37 (13.58) Table 1, Table
Sunitha Low/normal/high fluoride |1.2 mg/L (normal) 135, 80.49 (12.67) 135, 88.60 (14.01) 2
(2015)35:me, w* villages 2.0 mg/L (high) 135, 80.49 (12.67)
Cross-sectional
Zhang et al. China 10-12 |Urine, drinking water, Urine: 1.10 + 0.67 mg/L (reference) |96, 109.42 (13.30) |96, 109.42 (13.30) —2.42 (—4.59,-0.24) per 1

(201 Sb)l 10,me, w*, u,

Cross-sectional

serum

Reference/high fluoride
areas

2.40 + 1.01 mg/L (high)
Water: 0.63 (0.58-0.68) mg/L
(reference)

1.40 (1.23-1.57) mg/L (high)
Serum: 0.06 + 0.03 (reference)
0.18 £ 0.11 serum (high)

84, 102.33 (13.46)

84, 102.33 (13.46)

mg/L urinary F

Table 1, Table
3
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Mean-effects

Dose-response
Mean-effects Meta-

Regression Slopes

Meta-analysis analysis Meta-analysis
Age Assessment N, Mean (SD) N, Mean (SD) Slope (SE) or 95% CI
Reference® Study | Range | (Metric, Exposure [Reference] [Reference] per Unit Change
Study Design | Location | (Years) Groups) Fluoride Exposure Levels [Exposed] [Exposed] Fluoride Source
Zhang et al. China 7-13  |Urine 0.83 £0.71 mg/L (reference) 30, 110.34 (11.52) Table 1, Table
(2015¢y7ome Coal-bumning endemic |1.54 +0.57 mg/L (mildly ill) (reference) 3
Cross-sectional fluorosis area 2.41 £0.76 mg/L (moderately ill) ?01?0?12 (}1(;-37)
Reference (no dental . - critically 1
3.32 +1.02 mg/L (critically ill
fluorosis)/mild dental mg/L (critically ill)
fluorosis/middle dental
fluorosis/critically ill
dental fluorosis
Aravind et al. India 10—-12 |Drinking water <1.2 ppm (low) 96,41.03 (16.36) Table 1
(2016)%8 Low/high fluoride levels  |>2 ppm (high) 96,31.59 (16.81)
Cross-sectional
Das and Mondal India 6-18 |Urine, drinking water Urine: 2.91 £ 1.76 mg/L (normal) 4,108.30 (53.20) 4,108.30 (53.20) Table 3
(2016)!11me.u intake 2.50 + 2.39 mg/L (questionable) 23, 85.91 (37.68) 17, 103.18 (33.35)
i S58+1. i
Cross-sectional Dental ﬂuor0§1s 2.58 +1.31 mg/L (vgry mild) 27,107.70 (27.92)
(normal/questionable/very |2.95 + 1.44 mg/L (mild) 35.92.83 (26.90
mild/ mild/ 4.82 +3.57 mg/L (moderate) - 92.83 (26.90)
moderate/severe) 3.81 £2.51 mg/L (severe) 43,8451 (35.16)
Water: 0.069 £ 0.021 mg/kg-d 23,85.91 (37.68)
(normal)
0.064 + 0.004 mg/kg-d (questionable)
0.060 £ 0.036 mg/kg-d (very mild)
0.060 + 0.030 mg/kg-d (mild)
0.099 + 0.063 mg/kg-d (moderate)
0.093 £ 0.040 mg/kg-d (severe)
Mondal et al. India 10-14 |Drinking water Not reported (low) 22,26.41(10.46) 22,26.41 (10.46) Table 9

(20 1 6)36’mc‘ w

Cross-sectional

Low/high fluoride areas

0.33-18.08 mg/L (high)

18,21.17 (6.77)

18,21.17 (6.77)
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Mean-effects

Dose-response
Mean-effects Meta-

Regression Slopes

Meta-analysis analysis Meta-analysis
Age Assessment N, Mean (SD) N, Mean (SD) Slope (SE) or 95% CI
Reference® Study | Range | (Metric, Exposure [Reference] [Reference] per Unit Change
Study Design | Location | (Years) Groups) Fluoride Exposure Levels [Exposed] [Exposed] Fluoride Source
Bashash et al. Mexico 6—12 [Maternal urine <0.80 mg/L (reference) 77,95.37 (10.31) 77,95.37 (10.31) —2.50 (—4.12,-0.59) per  |Abstract, Table
(2017)!12mer s Reference/high fluoride | 20.80 mg/L (high) 112,96.80 (11.16) 112, 96.80 (11.16) 0.5 mg/L maternal urinary |3
Prospective leyels (based{ on children F
Cohort urinary fluoride)
Razdan et al. India 12-14 |Drinking water 0.6 ppm (low) 69, 38.61 (6.34) Table 2
(2017)7 Low/high fluoride levels |4.99 ppm (high) 75, 13.95 (5.14)
Cross-sectional
Valdez Jiménez et| Mexico Infancy [Maternal urine, drinking |Urine: Bayley MDI: Table 2, Table
al. 2017)7 water 1.9 + 1.0 mg/L (1% trimester) ~19.05 (8.9) per 1 loglo |4
Prospective 2.0 £ 1.1 mg/L (2™ trimester) mg/L maternal urinary F
St g1

Cohort 2.7+ 1.1 mg/L (3" trimester) (1% trimester)

Water: —19.34 (7.46) per 1 logl0

2.6+ 1.1 mg/L (1% trimester) mg/L maternal urinary F

. (2" trimester)

3.1+ 1.1 mg/L (2™ trimester)

3.7 + 1.0 mg/L (3¢ trimester)
Cui et al. China 7-12  |Urine Boys: 1.3 (0.9-1.7)¢ mg/L —2.47 (-4.93,-0.01) per 1 |Table 2
(2018)7" Girls: 1.2 (0.9-1.6)¢ mg/L log urinary F
Cross-sectional
Yuetal. China 7-13  |Maternal urine Urine: 0.01-1.60 mg/L (low) 1636, 107.40 (13.00) 1636, 107.40 (13.00) [0.36 (—0.29, 1.01) per 0.5 |Table 1, Table
(2018)>me, W, u* s Low/medium/high 1.60-2.50 mg/L (medium) 1250, 106.40 (12.30) |1250, 106.40 (12.30) |mg/L maternal urinary F 3

X fluoride ranges 2.50-5.54 mg/L (high)
Cross-sectional .
Drinking water Water: <1 mg/L (normal)
Normal/high fluoride >1 mg/L (high)

Overall: 0.01-5.54 mg/L (urine)

0.20-3.90 mg/L (water)
Zhao et al. China 7-12  |Urine <2.16 mg/L (reference) 199, 114.52 (12.72) Table 4

(201 8)86me, o

Cross-sectional

Reference/exposed areas

All areas with iodine
exposure

>2.16 mg/L (exposed)

100, 109.59 (14.24)
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Mean-effects

Dose-response
Mean-effects Meta-

Regression Slopes

Meta-analysis analysis Meta-analysis
Age Assessment N, Mean (SD) N, Mean (SD) Slope (SE) or 95% CI
Reference® Study | Range | (Metric, Exposure [Reference] [Reference] per Unit Change
Study Design | Location | (Years) Groups) Fluoride Exposure Levels [Exposed] [Exposed] Fluoride Source
Green et al. Canada 3—4 |Maternal urine, drinking |Urine: 0.40 + 0.27 mg/L 238, 108.07 (13.31) |238,108.07 (13.31) [-1.95(-5.19,1.28) per 1  |Table 2, text
(2019)!13,me, w* v, water, maternal fluoride  [(nonfluoridated) 162,108.21 (13.72) |162,108.21 (13.72)  |mg/L maternal urinary F |page 945,
s intake Nonfluoridated/ 0.69 + 0.42 mg/L (fluoridated) -5.29 (-10.39, —0.19) per 1 |¢Table 4
Prospective fluoridated area Water: OAl13 +0.06 mg/L mg/L water F
Cohort (nonfluoridated) ~3.66 (~7.16, 0.15) per 1
0.59 + 0.08 mg/L (fluoridated) mg maternal F intake
Intake: 0.30 + 0.26 mg/day
(nonfluoridated)
0.93 + 0.43 mg/day (fluoridated)
Overall: 0.51 + 0.36 mg/L (urine)
0.54 + 0.44 mg/day (intake)
0.31 +0.23 mg/L (water)
Cui et al. China 7-12  |Urine <1.6 mg/L (low) 396, 112.16 (11.50) |396, 112.16 (11.50) Table 1
(2020)!14me-u Low/medium/high 1.6-2.5 mg/L (medium) 36,110.00 (14.92) |66, 112.05 (12.01)

Cross-sectional

fluoride levels

>=2.5 mg/L (high)

36, 110.00 (14.92)

Page 20




Mean-effects

Dose-response
Mean-effects Meta-

Regression Slopes

Meta-analysis analysis Meta-analysis
Age Assessment N, Mean (SD) N, Mean (SD) Slope (SE) or 95% CI
Reference® Study | Range | (Metric, Exposure [Reference] [Reference] per Unit Change
Study Design | Location | (Years) Groups) Fluoride Exposure Levels [Exposed] [Exposed] Fluoride Source
Till et al. Canada 3—4 |Residence, maternal urine, |Urine: 0.38—0.42 mg/L —2.69 (-7.38,2.01) per 0.5 |Table 2
(2020)81rs drinking water, infant (nonfluoridated) mg/day infant F intake
. fluoride intake from 0.64—0.70 mg/L (fluoridated) (formula)
Prospective formula .
Cohort Water: 0.13 mg/L (nonfluoridated)
Nonfluoridated 0.58 mg/L (fluoridated)
areas/fluoridated Intake: 0.02—0.08 mg/day
(nonfluoridated)
0.12—0.34 mg/day (fluoridated)
Wang et al. China 7-13 |Urine, drinking water Urine: 0.01-5.54 mg/L —1.214 (-1.987, —0.442) Table 4
(2020b)*s Water: 0.20-3.90 mg/L per 1 mg/L urinary F
Cross-sectional —1.037 (-2.040, -0.035)
per 1 mg/L urinary F
(males)
—1.379 (—2.628,-0.129)
per 1 mg/L urinary F
(females);
—1.587 (—2.607, —0.568)
per 1 mg/L water F
—1.422 (-2.792,-0.053)
per 1 mg/L water F (males)
—1.649 (—3.201,-0.097)
per 1 mg/L water F
(females)
Wang et al. China 7-12  |Urine 0.461 £ 0.210 mg/L (nonendemic) 100, 97 (20.3) Section 2.1,

(2020C) 18me, o

Cross-sectional

Coal-burning endemic
fluorosis area
Nonendemic/endemic
fluorosis regions

0.689 + 0.502 mg/L (endemic)

170, 82.5 (21.7)

Table 2
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Reference®
Study Design

Study
Location

Age
Range
(Years)

Assessment
(Metric, Exposure
Groups)

Fluoride Exposure Levels

Mean-effects
Meta-analysis

N, Mean (SD)
[Reference]
[Exposed]

Dose-response

Mean-effects Meta-

analysis

N, Mean (SD)
[Reference]
[Exposed]

Regression Slopes
Meta-analysis

Slope (SE) or 95% CI
per Unit Change
Fluoride

Source

Xu et al. (2020)'°

me, u¥, s

Cross-sectional

China

7-13

Urine

Reference/high prenatal
exposure only/high
childhood exposure
only/both prenatal and
childhood exposure group

0.82 +0.30 mg/L (reference)
0.98 £ 0.29 mg/L (high prenatal
exposure only)

2.05 £ 0.58 mg/L (high childhood
exposure only)

2.13 +£0.59 mg/L (both prenatal and
childhood exposure group)

228, 123.92 (12.50)
141, 123.04 (11.24)

228, 123.92 (12.50)
107, 119.76 (11.28)
157, 124.65 (10.88)
141, 123.04 (11.24)

—0.055 (—1.626, 1.517) per
1 mg/L urinary F

2.785 (-0.832, 6.403) per 1
mg/L urinary F (<1.7 mg/L)
—4.965 (—9.198,-0.732)
per 1 mg/L urinary F (21.7
mg/L)

4.054 (-3.169, 11.277) per
1 mg/L prenatal urinary F
(<1.7 mg/L)

—3.929 (—9.396, 1.538) per
1 mg/L prenatal urinary F
(21.7 mg/L)

3.146 (—1.138, 7.430) per 1
mg/L postnatal urinary F
(<1.7 mg/L)

—6.595 (—13.323, 0.133) per
1 mg/L postnatal urinary F
(21.7 mg/L)

Table 1, Table
3, author
correspondence

Cantoral et al.
(2021)83

Prospective
Cohort

Mexico

Maternal fluoride intake

1.12 + 0.54 mg/day

Bayley III cognitive
scores:

—1.14 (-3.26, 0.99) per 0.5
mg/L maternal F intake
0.07 (-2.37, 2.51) per 0.5
mg/L maternal F intake
(females)

—3.50 (—6.58, —0.42) per
0.5 mg/L maternal F intake
(males)

Table 3, Table
4
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Mean-effects

Dose-response
Mean-effects Meta-

Regression Slopes

Meta-analysis analysis Meta-analysis
Age Assessment N, Mean (SD) N, Mean (SD) Slope (SE) or 95% CI
Reference® Study | Range | (Metric, Exposure [Reference] [Reference] per Unit Change
Study Design | Location | (Years) Groups) Fluoride Exposure Levels [Exposed] [Exposed] Fluoride Source
Guo et al., China 7-12  |Urine 1.16 mg/L (reference) 7-9 years: Table 2, Table
(2021)%me Reference/exposed areas |1.29 mg/L (iodine area 1) 71, 116.71 (12.16) 3
Cross-sectional (all areas with iodine 2.01 mg/L (iodine area 2) 35,118.11 (12.8)
exposure) 22, 113.95 (12.26)
10—12 years:
79, 109.86 (12.05)
48, 110.83 (10.58)
44, 105.39 (13.6)
Ibarluzea et al. Spain 1,4 |Maternal urine Urine: 0.38 = 0.27 mg/L Bayley MDI scores: |Bayley MDI scores:  |Bayley MDI scores: Section 2.2,
(2021)¥7 Nonfluorinated/ (nonfluorinated) ) 153,97.696 (14.91)  [153,97.696 (14.91)  |4.67 (—1.78, 11.13) per 1  |author
Prospective fluoridated communities  |0-70 + 0.41 mg/L (ﬂuorldate-d) 160, 100.395 (15.411)|160, 100.395 (15.411) |mg/L maternal urinary F correspondence
Cohort Water: <0.1 mg/L (nonfluorinated) |pjecarthy GCI MecCarthy GCI scores: |7-86 (=1.68, 17.40) per 1
0.81 +0.15 mg/L (fluoridated) scores: 123, 98.666 (15.531) mg/L maternal urinary F
123, 98.666 (15.531) |124, 101.473 (15.423) |21
124, 101.473 (15.423) 1.77 (=732, 10.87) per 1
mg/L maternal urinary F
(females)
McCarthy GCI scores:
—2.16 (—8.56,4.23) per 1
mg/L maternal urinary F
~1.79 (~11.85, 8.27) per 1
mg/L maternal urinary F
(males)
—3.60 (—12.07, 4.86) per 1
mg/L maternal urinary F
(females)
Lou et al. China 8-12 |Coal-burning endemic Not specified 44,96.64 (11.70) Table 4

(2021)19mc, o

Cross-sectional

fluorosis area
No fluoride measurement

Nondental fluorosis
children/dental fluorosis
children

55,88.51 (12.77)
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Mean-effects

Dose-response
Mean-effects Meta-

Regression Slopes

Cross-sectional

fluorosis areas

Meta-analysis analysis Meta-analysis
Age Assessment N, Mean (SD) N, Mean (SD) Slope (SE) or 95% CI
Reference® Study | Range | (Metric, Exposure [Reference] [Reference] per Unit Change

Study Design | Location | (Years) Groups) Fluoride Exposure Levels [Exposed] [Exposed] Fluoride Source
Saeed et al. Pakistan 5-16 |Urine, drinking water Urine: 0.24 + 0.15 mg/L (reference) |30, 100.93 (13.10) —3.54 (0.50) per 1 mg/L Table 1, Table
(2021)!16me. 01 Reference/high fluoride  |3.27 + 2.60 mg/L (high fluoride) 118, 97.26 (15.39) urinary F 3
Cross-sectional arcas Water: 0.15 £ 0.13 mg/L (reference)

Co-exposure with arsenic |5.64 +3.52 mg/L (high fluoride)

Wang et al. China 9—-11 |Drinking water 1.0 £ 0.07 mg/L (reference) 303, 109.0 (14.4) 303, 109.0 (14.4) Section 2.1,
(2021)me Reference/high fluoride 2.8 + 0.06 mg/L (high fluoride) 275,102.1 (16.3) 275,102.1 (16.3) Table 2
Cross-sectional areas
Zhao et al. China 6—11 |Urine 1.03 (0.72, 1.47) mg/L —5.957 (-9.712, -2.202) Section 3.1,
(2021)°' Nonendemic/endemic per 1 log urinary F Table 3

Notes:

SD = standard deviation; SE = standard error; MDI = Mental Development Index; GCI = General Cognitive Index

2An “me” superscript indicates that the studies included in the mean-effects meta-analysis; an
“w” superscript indicates studies included in the mean-effects dose-response meta-analysis using fluoride in water; a

footnote in the main publication); a
the mean-effects dose-response meta-analysis using fluoride in urine; “*” indicates studies included in the mean-effects dose-response meta-analysis at levels < 1.5 mg/L; an

studies included in the regression slopes meta-analysis.

YAdditional exposure regions including iodine levels were not included in the analysis.

°Additional exposure regions including arsenic levels were not included in the analysis.

dMedian (q1-q3).
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Did selection of study particij resultin i ison groups?

Did the study design or analysis account for important confounding and modifying variables?

Were outcome data complete with respect to attrition or exclusion from analysis?

Can we be confident in the exposure characterization?

Legend
222 Definitely low risk of bias Can we be confident in the outcome assessment?

Probably low risk of bias
| - | Probably high risk of bias Were all measured outcomes reported?

S Definitely high risk of bias
INR| Not reported
m Not applicable

Were there any other potential threats to internal validity?

eFigure 2. Results from Risk-of-bias Evaluations for Studies Included in the Meta-analyses and Sensitivity Analyses®

Panel (a) presents risk-of-bias results for all studies. An interactive version of eFigure 2(a) is available here: https://hawcproject.org/summary/visual/assessment/405/eFigure-2-Meta-analysis-RoB/.
Panel (b) presents risk-of-bias results for low risk-of-bias studies only. An interactive version of eFigure 2(b) is available here: https://hawcproject.org/summary/visual/assessment/405/eFigure-2b-
Meta-analysis-RoB-low-RoB-studies/.

The following studies are included in the mean-effects meta-analysis and mean-effects dose-response meta-analysis: Bashash et al. (2017),'1? Cui et al. (2020),''* Ding et al. (2011),'%7 Green et al.
(2019),'3 Seraj et al. (2012),%° Trivedi et al. (2012),% Xiang et al. (2003a), Xu et al. (2020),''* Yu et al. (2018),* and Zhang et al.(2015b).!1°

The following studies are included in the regression slopes meta-analysis: Bashash et al. (2017),!' Cui et al. (2018),”® Ding et al. (2011),'%” Green et al. (2019),''* Till et al. (2020),%' Xu et al.
(2020),'" Yu et al. (2018),> Zhang et al.(2015b),''* and Zhao et al. (2021).%!

Four studies are only included in sensitivity analyses. All four of these studies are included in sensitivity analyses for the regression slopes meta-analysis and include Cantoral et al. (2021), Ibarluzea
etal. (2021),% Valdez Jiménez et al. (2017),”* and Wang et al. (2020b).* Ibarluzea et al. (2021)*" is also included in sensitivity analyses for the mean-effects meta-analysis and mean-effects dose-
response meta-analysis.

Page 25


https://hawcproject.org/summary/visual/assessment/405/eFigure-2-Meta-analysis-RoB/
https://hawcproject.org/summary/visual/assessment/405/eFigure-2b-Meta-analysis-RoB-low-RoB-studies/
https://hawcproject.org/summary/visual/assessment/405/eFigure-2b-Meta-analysis-RoB-low-RoB-studies/

Mean-effects Meta-analysis

[in fluoridated vs. non-fluoridated areas in Canada,''® or in New Zealand.?® No other studies included in

the main mean-effects meta-analysis made comparisons between fluoridated vs. non-fluoridated areas. In
both studies, levels of fluoride in water were low, even in communities with fluoridated drinking water,
likely limiting the power to detect an effect.

In Bashash et al.,''? the SMD compares mean IQ scores in children with urinary fluoride levels below vs.
above 0.80 mg/L in Mexico.''? Unlike other studies in the mean-effects meta-analysis which compared
mean IQ scores between fluoridated vs. non-fluoridated areas, or areas with high vs. low fluoride
exposures (see eTable 2), the Bashash et al.''? study was not designed to measure fluoride exposure by
geographical area. However, since the mean IQ scores were provided in the manuscript for children with
urinary fluoride levels below vs. above 0.80 mg/L, we included them in this analysis. It’s worth noting
that there was no significant difference when comparing MUF levels between the groups of children with
urinary fluoride levels above or below 0.80 mg/L, however when children’s 1Qs were regressed against

|

MU, a statistically significant inverse association was found.l 1 Commented [I5]: See Doc06a_Meta-analysis, 62.M., page
8 and 9

Meta-regression results Commented [16]: See Doc06b Meta-analysis, 6b.C., page
2 and 3

|

[The results of the meta-regression models indicate that year of publication and mean age of study children
did not explain a large degree of heterogeneity as neither were significant predictors of the relationship
between fluoride and children’s intelligence, and the residual I remained high (85% and 87%,
respectively). Year of publication (SMD = 0.01, 95% CI: -0.01, 0.02) and mean age (SMD = -0.04, 95%
CI: -0.13, 0.04) explained relatively little between-study variance (adjusted R? of 12% and 5%,
respectively). When both year of publication and mean age were included in the model, there were no
notable improvements to the amount of between-study variance explained (adjusted R? = 13%) or percent
residual variation due to heterogeneity (residual I = 85%).

Excluding the outlier study** resulted in a slightly lower heterogeneity for the overall effect estimate
(1’>=84%) and for the India-specific effect estimate (I>=69%). The meta-regression indicates that mean age
is a significant predictor of the effect (SMD = -0.06, 95% CI: —0.12, —0.01, p-value =0.025), explaining
9% of the between-study variance. Year of publication (SMD = 0.01, 95% CI: 0.001, 0.02, p-

value=0.028) explained a larger degree of between-study variance (R?> = 19 %). \ | Commented [I7]: See Doc06b_Meta-analysis, 6b.G., page

7 and 8

|

Commented [I8]: See Doc08_Meta-analysis, 8.E., page 4

and 5

|
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Mean-effects meta-analysis sensitivity analyses

[eTable 3\. Sensitivity Analyses for Mean-effects Meta-analysis: Pooled SMDs and 95% ClIs for

e

ted [19]: See Doc05_Meta-analysis, 5.D., page 4

Children’s IQ Score and Exposures to Fluoride

Number of Heterogeneity
Analysis Studies SMD (95% CI) p-value | I?

Excluding Khan et al. (2015)*

54 | —0.43 (=0.51, —0.34) [ <0.001 [ 84%
Excluding Lin et al. (1991)%°

54 | —0.47 (=0.56, —0.37) [ <0.001 [ 87%
Excluding Li et al. (1994)'? [translated in Li et al. 2008b]

54 | —0.46 (=0.55, —0.36) [ <0001 [ 87%
Excluding Trivedi et al. (2012)*

54 | —0.46 (=0.56, —0.37) | <0.001 [ 87%
Low risk of bias studies, excluding Trivedi et al. (2012)%

9 | —0.22 (=0.40, —0.04) [ <0.001 | 8%
Including Ibarluzea et al. (2021),%” Bayley MDI score

56 | —0.45 (=0.54, —0.36) [ <0.001 [ 88%
Including Ibarluzea et al. (2021),%” McCarthy GCI score

56 | —0.45 (=0.54, —0.36) [ <0.001 [ 87%
Including Aravind et al. (2016),*® Kundu et al. (2015),°” Razdan et al. (2017)7

58 | —0.52 (=0.62, —0.42) [ <0.001 [ 93%

Including Aravind et al. (2016),° Kundu et al. (2015),*” Razdan et al. (2017)73, Ibarluzea et al. (2021),*”
Bayley MDI score

59 | —0.51 (-0.61, —0.40) [ <0.001 [ 91%

Including Aravind et al. (2016),°® Kundu et al. (2015),°” Razdan et al. (2017)73, Ibarluzea et al. (2021),%”
McCarthy GCI score

59 | —0.51 (—0.61, —0.40) [ <0.001 | 91%

Any exposure group

55 | —0.44 (=0.54, —0.34) [ <0.001 [ 91%

Notes:

CI = confidence interval; SMD = standardized weighted mean difference; MDI = Mental Development Index; GCI = General

Cognitive Index.
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eFigure 3. Funnel Plot of Included Studies

This funnel plot shows individual studies included in the analysis according to random-effect standardized weighted mean
difference (SMD) estimates (x-axis) and the standard error (SE) of each study-specific SMD (y-axis). The solid vertical line
indicates the pooled SMD estimate for all studies combined and the dashed lines indicated pseudo 95% confidence limits around
the pooled SMD estimate.

Regression-based Egger test for small-study effects
Random-effects model
Method: DerSimonian-Laird

H@: betal = @; no small-study effects

betal = -3.208

SE of betal = 8.576
z = -5.55

Prob > |z| = 0.0000

Begg's test for small-study effects

Kendall's score = -299.08
SE of score =  137.75@

z= -2.18

Prob > |z| = 8.8385

eFigure 4. Test for Publication Bias
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Nonparametric trim-and-fill analysis of publication bias Nonparametric trim-and-fill analysis of publication bias

Run estimator, imputing on the right Linear estimator, imputing on the left
Iteration Humber of studies = 62 Iteration Number of studies = 67
Model: Random-effects observed = 55 Model: Random-effects observed = 55
Method: DerSimonian-Laird imputed = 7 Method: DerSimonian-Laird imputed = 1z
Paaling Pooling
Medel: Random-effects Medel: Randem-effects
Method: Dersimenian-Laird Method: DerSimenian-Laird
Studies | Cohen's d [95% conf. interval] Studies | Cohen's d [95% conf. interval]
,,,,,,,,,,,,,,,,,,,,, e L
Observed | -8.461 -8.554 -8.368 Observed | -@.461 -@.554 -8.368
Observed + Imputed | -8.357 -9.459 -8.255 Observed + Imputed |

eFigure 5. Trim-and-fill Analysis

Left panel shows the random-effects pooled SMD after filling in to the right using a run estimator (the linear estimator to the
right showed no change in pooled SMD); right panel shows random-effects pooled SMD after filling in to the left using a linear
estimator (the run estimator to the left showed no change in pooled SMD).

Funnel plot Funnel plot
o o
5o 5o
5 5}
2 °
@ L] . o] L]
< 2
2 2
§ §
% < %<
L] L] L]
< o
5 0 5 - 4 2 0
Cohen'sd Cohen's d
Pseudo 95% CI @ Observed studies Pseudo 95% CI  ® Observed studies
Estimated 6o, ® Imputed studies Estimated 6o, ® Imputed studies

eFigure 6. Filled-in Funnel Plots to Eliminate Publication Bias

Left panel shows the funnel plot filled in to the right using a run estimator (the linear estimator to the right showed no change in
pooled SMD); right panel shows the funnel plot filled in to the left using a linear estimator (the run estimator to the left showed
no change in pooled SMD).
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Risk-of-bias Subgroup Analysis

Study Name SMD (95% CI)

] Ren 1989 [translated in Ren 2008] - -0.94 .17, -0.72)
Chen 1991 [translated in Chen 2008] s -0.26 .41, -0.10)

Guo 1991 [translated in Guo 2008a] —— -0.44 .80, -0.08)

Lin 1991 | - -0.17 .35, 0.00)

Sun 1991 - -0.93 113, -0.73)

An 1992 — -0.63 .89, -0.37)

Li 1994 [translated in Li 2008b] —e -0.75 .20, -0.31)

Xu 1994 —— -0.93 135, -0.52)

Li 1995 - -0.82 .01, -0.63)

Wang 1996 [translated in Wang 2008b] —o— -0.38 .65, -0.10)

Yao 1996 —— -0.46 71,
Zhao 1996 —— -0.54
Yao 1997 Lo -0.43
Zhang 1998 e -0.17
Lu 2000 —e— -0.62
Hong 2001 [translated in Hong 2008] —lo—| -0.44
Hong 2001b — -0.48
Wang 2001 — -0.50
Li 2003 [translated in Li 2008c] e -0.10
Wang 2005 - -0.30
Seraj 2006 — -0.89
B Wang 2006 —— -0.27
& Fan 2007 — -0.17
] Trivedi 2007 — -1.10
Wang 2007 |- -0.28
Li 2009 —r -0.50
Li 2010 et -0.07
Eswar 2011 —. -0.18
Kang 2011 e 0.00
Poureslami 2011 —ro—| -0.39
Shivaprakash 2011 —— -0.50
Wang 2012b e -0.36
Bai 2014 —— -0.45
Karimzade 2014 B ——— -1.23
Broadbent 2015 I 0.01
Khan 2015 B — ! -5.34
Sebastian and Sunitha 2015 e -0.45
Zhang 2015¢ _— -1.81
Das and Mondal 2016 —_— -0.56
Mondal 2016 —— -0.58
Zhao 2018 Lo -0.37
Wang 2020c — -0.68
Lou 2021 —e -0.66
Saced 2021 et -0.25
Wang 2021 - -0.45
oOverall High RoB + -0.52
Xiang 2003a - -0.64
Ding 2011 -0.04
Seraj 2012 — -0.53
Trivedi 2012 -0.26
= Zhang 2015b —— -0.53
5 Bashash 2017 , 0.13
H Yu 2018 . -0.08
Green 2019 K 0.01
Cui 2020 -0.18
Xu 2020 -0.07
L oOverall Low RoB +| -0.22
-6 -4 -2 0
[eFlgure 7L Association Between Fluoride Exposure and 1Q Scores in Children: Effect by Risk of C ted [EAM10]: Sce Doc06b_Meta-analysis,
Bias 6b.W., page 19 through 21.
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[eFigure 8L Funnel Plot by Risk-of-bias Evaluation

_——1 Cc

ted [EAM11]: See Doc06b_Meta-analysis,

Regression-based Egger test for small-study effects
Random-effects model .
Method: DerSimonian-Laird High RoB

Ha: betal = @; no small-study effects

betal = -3.41

SE of betal = 2.618
z = -5.52

Prob » |z| = 6.0888

*meta bias if rob==1, begg rob==
meta bias if rob==2, egger random(dl) nometashow

Regression-based Egger test for small-study effects
Random-effects model

Method: DerSimcnian-Laird Low RoB

H@: betal = @; no small-study effects

betal = -8.17

SE of betal = 1.835
z = -8.89

Prob > |z| = 8.9275

eFigure 9. Test for Publication Bias by Risk of Bias
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Nonparametric trim-and-fill analysis of publication bias
Run estimator, imputing on the right

Iteration Number of studies = 54

Model: Random-effects observed = 45
Method: DerSimonian-Laird imputed = 9
Paoling

Model: Random-effects
Method: DerSimonian-Laird

Studies | Cohen's d [95% conf. interval]
_____________________ e
Observed | -8.625 -8.416

Observed + Imputed | -9.454 -8.246

Monparametric trim-and-fill analysis of publication bias
Linear estimator, imputing on the left

Iteration Humber of studies = 54

Model: Random-effects observed = 45
Method: DerSimonian-Laird imputed = El
Pooling

Medel: Random-effects
Methed: DerSimonian-Laird

Studies | Cohen's d [95% conf. interval]
_____________________ e
Observed | -8.521 -8.625 -8.416

Observed + Imputed | -8.646 -8.765 -8.526

eFigure 10. Trim-and-fill Analysis for High Risk-of-bias Studies

Filling in to the right using a linear estimator or to the left using a run estimator showed no change in the pooled SMD.

Funnel plot Funnel plot

o o
51 544
54 5
© o
5] . . k] [
i 2
i 8
%< &~

L] L] L]
o o
5 0 5 E - 2 0
Cohen's d Cohen's d

Pseudo 95% CI  ® Observed studies
Estimated 65, ® Imputed studies

Pseudo 95% CI ® Observed studies
Estimated 6o, @ Imputed studies

eFigure 11. Filled-in Funnel Plots for High Risk-of-bias Studies

Left panel shows the random-effects pooled SMD after filling in to the right using a run estimator (the linear estimator to the
right showed no change in the pooled SMD); right panel shows random-effects pooled SMD after filling in to the left using a
linear estimator (the run estimator to the left showed no change in the pooled SMD).
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Sex Subgroup Analysis

SMD Weight

Study 95% ClI (%)
Female
Ren 1989 [translated in Ren 2008] — -0.56 [-0.88, -0.24] 4.09
Chen 1991 [translated in Chen 2008] —a— -0.24 [-0.46, -0.02] 4.67
Guo 1991 [translated in Guo 2008a] -0.52[-1.04, -0.00] 2.95
Li 1995 — -0.93[-1.26, -0.60] 4.03
Zhao 1996 e -0.55[-0.86, -0.23] 4.11
Xiang 2003a — -0.90[-1.18, -0.63] 4.37
Seraj 2006 —_— -0.87 [-1.45, -0.30] 2.68
Trivedi 2007 —_— -0.85[-1.33, -0.37] 3.13
Poureslami 2011 -0.22[-0.72, 0.28] 3.05
Trivedi 2012 -0.33[-1.03, 0.37] 2.16
Zhao 2018 — -0.64 [-1.00, -0.29] 3.88
Green 2019 —_ 0.13[-0.15, 0.41] 4.32
Wang 2021 —— -0.52[-0.77, -0.28] 4.55
Heterogeneity: 12 = 0.08, |2 = 73.80%, H2 = 3.82 . -0.53[-0.72, -0.34]
Testof 6 =0:z=-5.50, p=0.00
Male
Ren 1989 [translated in Ren 2008] —— -0.95[-1.27, -0.64] 4.12
Chen 1991 [translated in Chen 2008] —.— -0.29[-0.51, -0.07] 4.67
Guo 1991 [translated in Guo 2008a] -0.51[-1.02, -0.00] 2.99
Li 1995 — -0.75[-0.98, -0.51] 4.59
Zhao 1996 — -0.54 [-0.86, -0.23] 4.11
Xiang 2003a —— -0.45[-0.69, -0.21] 4.57
Seraj 2006 —_— -1.62[-2.21, -1.03] 2.61
Trivedi 2007 R — -1.25[-1.64, -0.85] 3.64
Poureslami 2011 —_— -0.64[-1.17, -0.11] 2.88
Trivedi 2012 -0.41[-0.99, 0.16] 2.66
Karimzade 2014 _— -1.23[-1.92, -0.55] 2.21
Zhao 2018 -0.14[-0.48, 0.19] 4.00
Green 2019 —— -0.11[-0.39, 0.18] 4.30
Wang 2021 —— -0.42[-0.65, -0.20] 4.64
Heterogeneity: 12 = 0.10, I2 = 78.33%, H2 = 4.61 ’ -0.62[-0.81, -0.42]
Testof 6 =0:z=-6.26, p = 0.00

2 1 0 1

eFigure 12. Association Between Fluoride Exposure and I1Q Scores in Children: Effect by Sex
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Age Group Subgroup Analysis

SMD Weight
Study 95% ClI (%)
<10 years

Chen 1991 [translated in Chen 2008] +a— -0.35[-0.60, -0.09] 4.07
Guo 1991 [translated in Guo 2008a] ———— -0.78[-1.43, -0.13] 2.08
Sun 1991 —— -0.93[-1.24, -0.62] 3.76
An 1992 = -049[-0.87, -0.11] 3.36
Wang 1996 [translated in Wang 2008b] . -0.38[-0.65, -0.10] 3.98
Zhang 1998 - 0.20[-0.21, 0.61] 3.17
Xiang 2003a — -0.85[-1.28, -0.43] 3.1
Li 2010 - -0.07[-0.22, 0.08] 4.59
Poureslami 2011 — -0.39[-0.76, -0.03] 3.46
Green 2019 —-— 0.01[-0.19, 0.21] 4.37
Wang 2020¢ —— -0.85[-1.22, -0.48] 3.40
Guo 2021 o T -0.23[-0.71, 0.25] 2.83
Wang 2021 —a— -0.53[-0.85, -0.22] 3.73
Heterogeneity: 1° = 0.09, I” = 80.18%, H* = 5.05 [ -0.41[-0.60, -0.22]

Testof ©=0:z=-4.21, p=0.00

210 years

Chen 1991 [translated in Chen 2008] - -0.23[-0.43, -0.03] 4.38
Guo 1991 [translated in Guo 2008a] - -0.34[-0.77, 0.10] 3.05
Sun 1991 —— -1.01[-1.28, -0.73] 3.98
An 1992 —=t -0.66[-1.01, -0.31] 353
Li 1994 [translated in Li 2008b] —_— -0.75[-1.20, -0.31]  3.01
Zhang 1998 _ -1.83[-3.23, -042] 0.67
Lu 2000 —e -0.62[-0.98, -0.25] 3.42
Xiang 2003a - -0.55[-0.75, -0.34] 4.36
Trivedi 2007 —— -1.10[-1.40, -0.79] 3.79
Eswar 2011 - -0.18[-0.52, 0.16] 3.59
Trivedi 2012 — -0.26[-0.69, 0.18] 3.05
Zhang 2015b — -0.53[-0.83, -0.23] 3.83
Mondal 2016 —_— -0.58[-1.22, 0.05] 2.14
Wang 2020c —— -0.44[-0.80, -0.08] 3.48
Guo 2021 — -0.35[-0.73, 0.02] 3.41
Wang 2021 - -0.44[-0.64, -0.25] 4.39
Heterogeneity: T = 0.05, I’ = 68.21%, H’ = 3.15 & -0.55[-0.70, -0.40]

Testof 8=0:z=-7.34, p=0.00

eFigure 13. Association Between Fluoride Exposure and 1Q Scores in Children: Effect by Age
Group
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Country Subgroup Analysis

China

India

Iran

New Zealand

eFigure 14. Association Between Fluoride Exposure and IQ Scores in Children: Effect by Country

Study Name

Green 2019
Overall Canada

Ren_ 1989 [translated in Ren 2008
Chen 1991 [translated in Chen 2008
Guo 1991 [translated in Guo 2008a]
Lin 199
Sun 1991
) An 1992
Li 1994 [translated in Li 2008b)
Xu 1994
i 1995
Wang 1996 [translated in Wang 2 2008b1
1996
Zhao 199¢

Hiong 2001 [translated in Hong 200

ng 200
adq 90
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Xiang 200

20

20

Fan 20
20

20
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Assessment Type Subgroup Analysis

Study Name SMD (95% CI)
Chen 1991 [translated in Chen 2008] Lo -0.26 (-0.41, -0.10)
Lin 1991 | -0.17 (-0.35, 0.00)
Li 1995 - -0.82 (-1.01, -0.63)
Zhao 1996 ——t -0.54 (-0.76, —0.31)
Lu 2000 —t -0.62 (-0.98, -0.25)
Hong 2001 [translated in Hong 2008] —— -0.44 (-0.85, -0.03)
Hong 2001b —] -0.48 (-0.99, 0.03)
Wang 2001 — -0.50 (- 2
Li 2003 [translated in Li 2008c] | -1 -0.10 (-0
Xiang 2003a - -0.64 (-0.
Wang 2005 - -0.30 (-0.
2 Wang 2006 | -0.27 (-0
n Fan 2007 —— -0.17 (-0
8 Wang 2007 - -0.28 (-0
Li 2009 — -0.50 (-1
9 Li 2010 = -0.07 (-0
i) Ding 2011 — -0.04 (-0
& Kang 2011 —t+ .00 (-0
& Wang 2012b + -0.36 (-0
Bai 2014 — -0.45 (-0
Zhang 2015b — -0.53 (
Zhang 2015c —_— h -1.81 (
Das and Mondal 2016 —_—— -0.56 (-1.
Yu 2018 K -0.08 (-0.
Zhao 2018 —+ -0.37 (-0.
Cui 2020 e -0.18 (-0.¢
Wang 2020c —— -0.68 (-0.
Xu 2020 o -0.07 (0.2
Wang 2021 - -0.45 (-0.
L_| overall CRT-RC Tests + -0.36 (-0.
Yao 1996 —— -0.46 (-0.
" Yao 1997 - -0.43 (-0.
B3 seraj 2006 — -0.89 (1.2
o swar 2011 | — -0.18 (-0.°
& Poureslami 2011 —— -0.39 (-0.
P Shivaprakash 2011 — -0.50 (-0.
H Seraj 2012 —— -0.53 (-0.
I Khan 2015 —_— ' -5.34 (-6.
3 Sebastian and Sunitha 2015 \—— -0.45 (-0.
Mondal 2016 —— -0.58 (-1.
L overall Raven Tests —— -0.76 (-1.
Ren 1989 [translated in Ren 2008] - -0.94 (-1.
Guo 1991 [translated in Guo 2008a] —— -0.44 (-0.
Sun 1991 - -0.93 (-1.
n 1992 — -0.63 (-0.
” Li 1994 [translated in Li 2008b] — -0.75 (1.2
3 1 1994 — -0.93 (-1.
@ Wang 1996 [translated in Wang 2008b] e -0.38 (-0.
& Zhang 1998 — -0.17 (-0.
Trivedi 2007 — -1.10 (-1.
b Trivedi 2012 —_— -0.26 (0.
ki Karimzade 2014 B -1.23 (-1.
s Broadbent 2015 e o 0.01 (-0.
Bashash 2017 e 0.13 (-0.
Green 2019 - 0.01 (-0.
Lou 2021 —e -0.66 (-1.
Saced 2021 et -0.25 (-0.
L] Overall Other Tests —— -0.52 (-0.
-6 -4 -2 0

eFigure 15. Association Between Fluoride Exposure and 1Q Scores in Children: Effect by
Assessment Type
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Exposure Type Subgroup Analysis

Water fluoride

Chen 1991 [Lranslaled in Chen 2008
9

Dental fluorosis

Other exposures

eFigure 16. Association Between Fluoride Exposure and 1Q Scores in Children: Effect by Exposure

Type

Exposure types include water, dental fluorosis, and other exposures (iodine, arsenic, aluminum, and fluoride from coal burning).
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Dose-Response Meta-analysis Using Mean Effect Estimates

[When analyses were restricted to exposed groups with [<4 mg/L (i.e., 0 to <4 mg/L) fluoride in drinking

Wateﬂ (n =21 publications [6 low and 15 high risk-of-bias studies]), there was a statistically significant __—| Commented [112]: Sce Doc06a_Meta-analysis, 6a.L., }
inverse association between fluoride exposure and children’s 1Q (SMD: —0.22; 95% CI: —0.27, —0.17; p- page 7 and 8

value < 0.001) (eTable 4). When restricted to ’<2 mg/L (i.e., 0 to <2 mg/L) in drinking water|(n =7 ———{ commented [113]: See DocO6a_Meta-analysis, 6a.L., }
publications [3 low and 4 high risk-of-bias studies]), the magnitude of the effect estimate did not page 7 and 8 B

substantially change (SMD: —0.15; 95% CI: —0.41, 0.12; p-value = 0.274). However, when restricted to

exposed groups with [<1 .5 mg/L (i.e., 0 to <1.5 mg/L) in drinking water‘ (n =7 publications [3 low and 4 /{ Commented [114]: See Doc06a_Meta-analysis, 6a.L., }
high risk-of-bias studies]), there was no longer an association between fluoride in drinking water and page 7 and 8

children’s IQ (SMD: 0.05; 95% CI: —0.36, 0.45; p-value = 0.816). When analyses were further restricted
to low risk-of-bias publications at <4 mg/L, <2 mg/L, and <1.5 mg/L, the associations remained in the
same direction and were larger in magnitude compared to when data from both low and high risk-of-bias

studies were combined (eTable 4 and eTable 5), /{ Commented [115]: See Doc0l Meta-analysis, 1.P. (page }

8) and Doc06b_Meta-analysis, 6b.EE. (page 24 and 25)

When analyses were restricted to exposed groups with <4 mg/L urinary fluoride (n = 13 publications [9
low and 4 high risk-of-bias studies]), there was a statistically significant inverse association between
children’s urinary fluoride exposure and 1Q (SMD: —0.17; 95% CI: —0.30, —0.05; p-value = 0.005)
(eTable 4). When restricted to <2 mg/L urinary fluoride (n = 7 publications [5 low and 2 high risk-of-bias
studies]), there was an inverse association (SMD: —0.06; 95% CI: —0.14, 0.01; p-value = 0.094). When
restricted to exposed groups with <1.5 mg/L urinary fluoride (n = 5 publications [4 low and 1 high risk-
of-bias studies]), there was an inverse association (SMD: —0.09; 95% CI: —0.16, —0.01; p-value = 0.026).
When analyses were further restricted to low risk-of-bias publications, the associations at <2 mg/L and
<1.5 mg/L became smaller in magnitude and were statistically significant at <1.5 mg/L (p-value = 0.472
and p-value = 0.028, respectively) (eTable 4). Similar results were observed when the maximum
likelihood estimation method was used (eTable 5).
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[eTable 4.\ Dose-Response Meta-analysis Using Mean Effects—Model Selection®

_—| Commented [116]: See Doc01_Meta-analysis, 1.K., Page

4and 5

Exposure Fluoride Exposure
Analysis Parameters All data <4 mg/L <2 mg/L <1.5 mg/L
Water Fluoride — All Studies
No. Studies/No. Observations 29/39 21/27 7/9 71
Number of Children 11,656 8,723 2,971 2,832
Beta (95% CI) —0.15 (=0.20, —0.11) -0.22 (-0.27,-0.17) —0.15 (-0.41, 0.12) 0.05 (-0.36, 0.45)
Linear Model® p-value p <0.001 p <0.001 p=0.274 p=0.816
AIC AIC=53.8 AIC=16.1 AIC=11.8 AIC=38.2
0, . — | . — . — .
Beta (95% CI); 0.27 (-0.34, -0.21); 0.12 (70.35, 0.11); 0.79 ( j).Ol, 1.58); 0.30 ( 9.53, 1.14);
p-value p <0.001 p=0.318 p=0.052 p=0.477
Quadratic Beta (95% CI); " —0.04 (=0.10, 0.03); —0.56 (—0.97,-0.16); —0.23 (-1.01, 0.55);
Model® p-value 0.02 (O(EI’((I)E)Z)EE I; <0.001 p=0.280 p=0.006 p=0.561
AIC e AIC=212 AIC=12.5 AIC=11.3
% p* <0.001 % _ % _ % _
p-value p*=0.012 p*=0.007 p*=0.04
0, . — — —
Beta (95% CI); ~0.29 (0,39, ~0.20); 0.14 (70.34, 0.06), 115 (0.07, 2.22) p = 0.037 0.49 (70.50, 1.47)
p-value <0.001 p=0.162 120 (2,03, —0.36 p=0.334
Restricted Cubic Beta (95% CI); p=" o —0.23 (—0.66, 0.20), ' (_ -03,70.36) —0.69 (-2.40, 1.02)
. d 0.48 (0.18, 0.78); p = 0.002 _ p = 0.005 -
Splines Model p-value AIC =433 p=0.295 AIC= 105 p=0.428
AIC . <_0 00'1 AIC=16.9 . _‘0 01’0 AIC=10.2
p-value* pr =9 p* = 0.009 pr =0 p*=0.05
Water Fluoride — Low Risk-of-bias Studies
No. Studies/No. Observations 6/11 6/9 3/4 3/3
Number of Children 4,355 4,251 921 879
Beta (95% CI) —0.19 (—0.34, —0.05) —0.22 (-0.36, —0.07) —0.34 (-0.72, 0.03) —0.32 (-0.91, 0.26)
Linear model p-value p =0.009 p=10.003 p=10.070 p=0.276
AIC AIC=10.3 AIC=3.9 AIC=4.5 AIC=4.1

Page 39



Exposure Fluoride Exposure
Analysis Parameters All data <4 mg/L <2 mg/L <1.5 mg/L
Urinary Fluoride — All Studies
No. Studies/No. Observations 18/32 13/26 7/11 5/8
Number of Children 8,502 6,885 4,654 3,992
Beta (95% CI) —0.16 (—0.24, —0.08) —0.17 (=0.30, —0.05) —0.06 (—0.14, 0.01) —0.09 (=0.16, —0.01)
Linear Model® p-value p <0.001 p =0.005 p=0.094 p=0.026
AIC AIC=73.8 AIC=68.0 AlIC=1.2 AIC=2.38
Beta (95% C); 0.07 (=0.23, 0.38); —0.22 (—0.65, 0.20); 0.65 (—1.46, 2.76);
p-value —0.10 (—0.31, 0.11); p=0.360 p=0.645 p=0.303 p=0.548
Quadratic Beta (95% CU); —0.01 (—0.05, 0.02); p = 0.496 —0.07 (—0.16, 0.01); 0.08 (—0.13, 0.30); —0.66 (—2.11, 0.80);
Model® p-value AIC =843 p=0.071 p=0.456 p=0.379
AIC p*=0.14 AIC=758 AIC=9.2 AIC=38.3
p-value* p*=0.08 p*=0.42 p*=0.10
Beta (95% CD); —0.03 (—0.22, 0.16); —0.14 (—0.32, 0.04); —0.52 (—1.65, 0.62);
p-value —0.12 (—0.28, 0.04); p=0.150 p=0.741 p=0.130 p=0.371
Restricted Cubic Beta (95% CD); —0.10 (—0.43, 0.23); p=0.545 | —0.24 (-0.47,-0.002); 0.13 (0.17, 0.43); 0.63 (—1.32, 2.59);
Splines Model¢ p-value AIC=79.6 p=0.048 p=0.395 p=0.524
AIC p*=0.13 AIC=73.3 AIC=8.5 AIC=6.7
p-value* p*=0.07 p*=0.37 p*=0.07
Urinary Fluoride — Sensitivity analysis including Ibarluzea et al. (2021)*’ Bayley MDI scores
No. Studies/No. Observations 19/33 14/27 8/12 6/9
Number of Children 8,815 7,445 4,967 4,305
Beta (95% CI) —-0.15 (-0.23, -0.07) —0.15 (—0.28, —0.03) —0.04 (—0.14, 0.05) —0.08 (—0.15,—0.003)
Linear model p-value p <0.001 p=0.015 p=0.371 p=0.043
AIC AIC=175.0 AIC=69.0 AIC=1.7 AIC=3.6
Urinary Fluoride — Sensitivity analysis including Ibarluzea et al. (2021)3” McCarthy GCI scores
No. Studies/No. Observations 19/33 14/27 8/12 6/9
Number of Children 8,749 7,445 4,901 4,239
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Fluoride Exposure

Exposure
Analysis Parameters All data <4 mg/L <2 mg/L <1.5 mg/L
Beta (95% CI) —0.15 (-0.23,-0.07) —0.16 (—0.28,-0.04) —0.05 (-0.14, 0.04) —0.08 (—0.16,—0.01)
Linear model p-value p <0.001 p=0.011 p=10.259 p=10.036
AIC AIC=174.5 AIC = 68.6 AIC=13 AIC=3.0
Urinary Fluoride — Low Risk-of-bias Studies
No. Studies/No. Observations 9/15 9/15 5/8 4/7
Number of Children 5,713 5,713 4,141 3,952
Beta (95% CI) —0.10 (-0.21, 0.01) —0.10 (=0.21, —0.01) —0.05 (=0.17, 0.08) —0.08 (—0.16,—0.01)
Linear model p-value p=0.082 p=0.082 p=0.472 p=0.028
AIC AIC=59 AIC=59 AIC=238 AIC=25

Notes:

AIC = Akaike information criterion; SMD = standardized mean difference; p = p-value for effect estimate; p* = p-value for likelihood ratio tests; MDI = Mental Development Index;
GCI = General Cognitive Index
2Parameter estimates are changes in SMDs (beta [95% CI]) based on the restricted maximum likelihood models; model fit is represented by the maximum likelihood AIC.
The estimates represent change in SMD for the linear model and AIC, respectively.

“The estimates represent change in SMD for the linear term, change in SMD for quadratic term, AIC, and p-values for likelihood ratio test versus linear model, respectively. Potential
departure from a linear trend was assessed by testing the coefficient of the quadratic term equal to zero.
9The estimates represent change in SMD for the first spline term, change in SMD for the second spline term, AIC, and p-value for likelihood ratio test vs linear model, respectively.
Potential departure from a linear trend was assessed by testing the coefficient of the second spline equal to zero.
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[eTable SL Dose-response Meta-analysis Using Mean Effects: Maximum Likelihood Models®

_—| Commented [I117]: See Doc01_Meta-analysis, 1.K., page 4

and 5

Exposure Fluoride Exposure
Analysis Parameters All data <4 mg/L <2 mg/L <1.5 mg/L
Water Fluoride — All Studies
No. Studies/No. Observations 29/39 21/27 7/9 71
Number of Children 11,656 8,723 2,971 2,832
Beta (95% CI) —0.15 (=0.20,—0.11) -0.22 (-0.27,-0.17) —-0.15 (=0.39, 0.08) 0.02 (-0.33, 0.36)
Linear Model® p-value p <0.001 p <0.001 p=10.202 p=10.928
AIC AIC =479 AIC=10.5 AIC=9.6 AIC=6.7
Beta (95% CI); —=0.11 (=0.33,0.11); 0.64 (0.04, 1.24); 0.34 (-0.37, 1.04);
vaalue ) _0.26;;063.(2)2)10'20); p(= 0.332 : p(= 0.036 ) IE =0.349 )
uadratic Beta (95% CI); —0.04 (=0.10, 0.02); —0.49 (—0.81,-0.16); —0.26 (—0.88, 0.35);
QModelc pfvalue ) 0.02 (0'(21’85?3; p < 0.001 p(= 0.229 : 15 =0.003 : p(= 0.405 :
AIC p* <0 00'1 AIC=10.2 AIC=8.2 AIC=8.5
p-value* ’ p*=0.012 p*=0.007 p*=0.04
Beta (95% CI); ~0.29 (-0.38,~0.21); —-0.13 (:0.32, 0.05); 0.27 (—f).09, 0.62); 0.26 (—j).26, 0.79);
Dot p = 0.001 0 24p(700.615620 16) 0 4412 7008;400 04) 0 49P(’ 10.5342 10 56)
Restricted Cubic Beta (95% CI); L —0.24 (=0.65, 0.16); —0.44 (—0.83, —0.04); —0.49 (—1.54, 0.56);
Splines Model¢ p-value 0.48 (O?AOI,((J)Z?; g =0.001 p=0.233 p=0.029 p=0.363
AIC ¥ <0 00'1 AIC=9.7 AIC=8.9 AIC=8.7
p-value* ’ p* =0.009 p*=0.010 p*=0.05
Water Fluoride — Low Risk-of-bias Studies
No. Studies/No. Observations 6/11 6/9 3/4 3/3
Number of Children 4,355 4,251 921 879
Beta (95% CI) —0.19 (—0.31, —0.06) —0.21 (-0.33, —0.09) —0.35 (—0.63, —0.07) —0.34 (—0.80, 0.12)
Linear model p-value p=0.003 p=10.001 p=0.015 p=0.153
AIC AIC=6.7 AIC=0.3 AIC=2.7 AIC=33
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Exposure Fluoride Exposure
Analysis Parameters All data <4 mg/L <2 mg/L <1.5 mg/L
Urinary Fluoride — All Studies
No. Studies/No. Observations 18/32 13/26 7/11 5/8
Number of Children 8,502 6,885 4,654 3,992
Beta (95% CI) —0.16 (—0.23, —0.08) -0.17 (—0.29, —0.06) —0.07 (-0.13, 0.003) -0.12 (—0.36, 0.12)
Linear Model® p-value p <0.001 p =0.004 p = 0.060 p=0.325
AlIC AIC =69.2 AIC=64.2 AIC=-3.7 AIC=0.8
Beta (95% C); 0.08 (-0.21, 0.37); -0.23 (-0.62, 0.17); —0.11 (—1.45, 1.23);
p-value —0.19 (—0.44, 0.06); p=0.131 p=10.587 p=0.267 p =0.868
Quadratic Beta (95% CU); 0.01 (—0.02, 0.05); p=0.462 | —0.08 (—0.16, 0.0004); 0.08 (—0.12, 0.29); 0.02 (-0.74, 0.77);
Model® p-value AIC=73.0 p=0.051 p=0.423 p=10.967
AIC p*=0.14 AIC =672 AIC=1.7 AIC=4.1
p-value* p*=0.08 p*=0.42 p*=10.10
Beta (95% CD); —0.03 (—0.21, 0.15); —0.13 (-0.29, 0.03); —0.26 (—0.72, 0.20);
p-value —0.12 (—0.28, 0.04); p=0.138 p=0.775 p=0.107 p=0.270
Restricted Cubic Beta (95% CU); —0.10 (—0.41,0.21); p=0.524 | —0.24 (—0.47,-0.02); 0.12 (—0.14, 0.38); 0.36 (—0.58, 1.29);
Splines Model¢ p-value AIC=729 p=0.034 p=0.366 p=10.453
AIC p*=0.13 AIC =66.8 AIC=1.5 AIC=3.5
p-value* p*=0.07 p*=0.37 p*=0.07
Urinary Fluoride — Sensitivity analysis including Ibarluzea et al. (2021)*’ Bayley MDI scores
No. Studies/No. Observations 19/33 14/27 8/12 6/9
Number of Children 8,815 7,445 4,967 4,305
Beta (95% CI) —-0.15 (-0.23, -0.07) —0.16 (—0.28, —0.04) —0.06 (—0.13,0.01) —0.08 (—0.15 —0.003)
Linear model p-value p <0.001 p=10.010 p=10.086 p=0.043
AIC AIC=70.3 AIC=065.2 AIC=-3.2 AIC=-1.2
Urinary Fluoride — Sensitivity analysis including Ibarluzea et al. (2021)%” GCI scores
No. Studies/No. Observations 19/33 14/27 8/12 6/9
Number of Children 8,749 7,445 4,901 4,239
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Exposure Fluoride Exposure
Analysis Parameters All data <4 mg/L <2 mg/L <1.5 mg/L
Beta (95% CI) —0.15 (—0.23,-0.07) —0.16 (—0.28, —0.04) —0.04 (—0.20, 0.13) —0.08 (—0.16, —0.01)
Linear model p-value p <0.001 p=0.008 p=0.653 p=0.036
AIC AIC =69.8 AIC =649 AIC=-0.9 AIC=-1.7
Urinary Fluoride — Low Risk-of-bias Studies
No. Studies/No. Observations 9/15 9/15 5/8 4/7
Number of Children 5,713 5,713 4,141 3,952
Beta (95% CI) —0.10 (—0.20, 0.004) —0.10 (=0.20, 0.004) —0.07 (=0.14, 0.01) —0.08 (—0.16,—0.01)
Linear model p-value p=0.059 p=0.059 p=0.073 p=0.028
AIC AIC=2.0 AIC=2.0 AIC=-1.8 AIC=-22
Notes:

AIC = Akaike information criterion; SMD = standardized mean difference; p = p-value for effect estimate; p* = p-value for likelihood ratio tests; MDI = Mental Development Index;
GCI = General Cognitive Index

aParameter estimates are changes in SMDs (beta [95% CI]) based on the maximum likelihood models; model fit is represented by the maximum likelihood AIC.

The estimates represent change in SMD for the linear model and AIC, respectively.

“The estimates represent change in SMD for the linear term, change in SMD for quadratic term, AIC, and p-values for likelihood ratio test versus linear model, respectively. Potential
departure from a linear trend was assessed by testing the coefficient of the quadratic term equal to zero

9The estimates represent change in SMD for the first spline term, change in SMD for the second spline term, AIC, and p-value for likelihood ratio test vs linear model, respectively.
Potential departure from a linear trend was assessed by testing the coefficient of the second spline equal to zero.
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‘Water Fluoride Exposure

Children's 1Q and water fluoride Children's 1Q and water fluoride levels
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[eFigure 17\. Pooled Dose-Response Association Between Fluoride in Water and Standardized Mean Differences in //{ Cc ted [118]: See Doc08_ Meta-analysis., 8.R., page }

Children’s IQ 10 and 11

Left panel: circles indicate standardized weighted mean differences (SMDs) in individual studies; size of bubbles is proportional to precision (inverse Commented [119]: See Doc03 Meta-analysis, 3.F., page 4 ]
of variance) of the standardized mean differences. Right panel: Water fluoride levels were modeled with restricted cubic splines terms in a random-
effects model (solid line). Dashed lines represent the 95 % confidence intervals for the spline model. Please see eTable 2 for characteristics of the
studies included in the dose-response meta-analysis (studies with water fluoride exposure and at least two exposure levels).
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Urinary Fluoride Exposure

Children's 1Q and urinary fluoride Children's IQ and urinary fluoride
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[eFigure 18]. Pooled Dose-Response Association Between Fluoride in Urine and Standardized Mean Differences in //[ Cc ted [120]: See Doc03_Meta-analysis, 3.F., page 4 }

Children’s IQ

Left panel: Circles indicate standardized weighted mean differences in individual studies; size of bubbles is proportional to precision (inverse of
variance) of the standardized mean differences. Right panel: Urinary fluoride levels were modeled with a linear random-effects model (solid line).
Dashed lines represent the 95 % confidence intervals for the linear model. Please see eTable 2 for characteristics of the studies included in the dose-
response meta-analysis (studies with urinary fluoride exposure and at least two exposure levels).
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Regression Slopes Meta-analysis
Studies with overlapping populations

Yu et al.> and Wang et al.* used the same study cohort of children recruited in 2015 from the rural areas of
Tianjin City, China. Since Wang et al.* (n = 571) used a subset of the original study sample from Yu et
al.3 (n = 2,886), only results from Yu et al.> were included in the meta-analysis. A sensitivity analysis was
performed to evaluate the impact of using the effect estimate from Wang et al.* rather than the pooled
effect estimate from Yu et al.3. Green et al.''® and Till et al.®! used the same Maternal-Infant Research on
Environmental Chemicals (MIREC) cohort that reported drinking tap water in 10 Canadian cities, with
the studies overlapping for 398 mother-child pairs. Both studies reported effect estimates for maternal
urinary fluoride (MUF) and water fluoride concentrations. In the Green et al.'' study, 512 mother-child
pairs had MUF data compared to 398 pairs in Till et al.’!. Water fluoride levels were available for 420
pairs in Green et al.''3 compared to 398 pairs in Till et al.’'. Both studies reported effect estimates
adjusted for maternal education, maternal race, child’s sex, HOME total score, and secondhand smoke
status in the child’s home. In addition, Till et al.?' adjusted for child’s age at IQ testing (the age range for
all children was 3—4 years old). Because of the larger sample size and because covariate adjustments were
similar, results from Green et al.!'* were included in the main analysis. However, because of the more
adjusted estimates from Till et al.®! compared to Green et al.''3, a sensitivity analysis was performed using
the water fluoride result for formula-fed children and the MUF result from Till et al.®!. For fluoride from
intake, the estimates from both studies were used since they represent total fluoride intake from Green et
al.'"® and infant fluoride intake from formula Till et al.®!.

Three studies were excluded with reported slopes because the exposure was measured at the community
level.>3%35 Only one study''® included in this meta-analysis was considered high risk of bias. For
Bashash et al.''2, Yu et al.> and Till et al.}', units of exposure were transformed from 0.5 mg/L to 1 mg/L.
Cui et al.”, and Zhao et al. (2021)°' reported associations between IQ and log-transformed exposure, and
units of exposure were transformed from 1 log mg/L to 1 mg/L!"". Yu et al.’ reported estimates from
piecewise linear regression models and provided three ranges for urinary fluoride exposure (low 0.01—
1.60 mg/L, medium 1.60-2.50 mg/L, high 2.50-5.54 mg/L) and two ranges for water fluoride (low 0.20—
3.40 mg/L and high 3.40-3.90 mg/L). Since these piecewise effect estimates are likely correlated, the
study-specific pooled effect estimates were used for urine and water fluoride exposures for the overall
effect meta-analysis. A sensitivity analysis was performed to evaluate the impact of using pooled
estimates rather than piecewise estimates from Yu et al.>.

For studies reporting multiple measures of fluoride exposure, the results associated with measured or
estimated individual-level exposures, biomarker levels (such as urinary fluoride), or fluoride intake levels
were prioritized over water fluoride concentrations (see protocol; https://ntp.nichs.nih.gov/go/785076);
however, subgroup analyses by exposure metric (urinary fluoride, fluoride intake, and water fluoride)
were also performed.

Regression slopes meta-analysis sensitivity analyses

Information about demographic variables was not always accessible, making it difficult to study the
impact of potential confounders on effect estimates. Sensitivity analyses for the regression slopes
explored the impact of using unadjusted estimates, and results were not significantly impacted (eTable 6).
Also, most of the estimates used in the mean-effects meta-analyses come from studies that used fluoride
concentrations at the community level to represent exposure. Therefore, unless community-level
clustering is accounted for in the analysis, the standard errors of the difference in means between exposed
and reference groups are likely to be biased. This is less of an issue in studies using individual-level
exposures (e.g., the regression slopes meta-analysis). However, most studies lacked adjustment for
clustering,® 7% % or for complex sampling strategies.® ''° Therefore, we performed sensitivity analyses to
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assess the impact of such issues and there were minimal changes in the pooled slopes (eTable 6). In the
regression slopes meta-analysis, from the Green et al.''® and Bashash et al."'? studies, we used the
estimates reported from the models using the clustering variable (city or cohort, respectively) as a fixed
effect. However, the sensitivity analysis using the regression slopes from the corresponding models with
random effects from the Green et al.!'* and Bashash et al.!'? studies,!'® !'® showed that a 1-mg/L increase
in urinary fluoride was associated with a statistically significant lower 1Q score of 1.80 points (95% CI:
—2.80, —0.81). This suggests that clustering is not a significant issue in the results of our regression slopes
meta-analysis.
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[eTable d Regression Slopes Meta-analysis

Cc ted [121]: See Doc05_Meta-analysis, 5.C. (page

Heterogeneity
Analysis Number of Studies Beta (95% CI) p-value | I?
Overall Estimate
Full-scale IQ | 9 | -1.81(-280,-081) | <0001 | 77%
Sensitivity Analyses
Using the piecewise estimates from Yu et al. (2018)’
Full-scale IQ | 11 | —1.68(265-070) | <0001 |  79%
Using effect estimates from Wang et al. (2020b)* rather than Yu et al. (2018)°
Full-scale IQ | 9 | —170(-255,-0.85) | <0001 |  77%
Using Till et al. (2020)% rather than Green et al. (2019)!3 estimates
Full-scale 1Q | 9 | —1.83(—2.80,—0.86) | <0.00l |  77%
Using estimates from random effect models for Green et al. (2019)'"3 and Bashash et al. (2017)?
Full-scale 1Q 9 —1.80 (—2.80, —0.80) <0.001 76%
Males 2 —2.39(-5.89, 1.10) 0.070 69%
Females 2 —0.53(=3.43,2.37) 0.186 43%
Excluding Cui et al.”®
Full-scale IQ | 8 | -1.89(3.03,-074) | <0001 |  80%
Excluding Yu et al. (2018)3 and Zhang et al. (2015b)'"°
Full-scale IQ | 7 | -176(290,-062) | <0001 | 8%

Using unadjusted estimates from Bashash et al. (2017),"? Cui et al. (2018),7° Green et al. (2019)'", Yu et al.
(2018)*

Full-scale IQ | 9 | —1.82(—2.81,0.83) | <0.001 |  76%

Using Verbal or Performance IQ scores from Green et al. (2019)'13
Verbal IQ 9 —1.78 (=2.78, —0.79) <0.001 77%
Performance 1Q 9 —1.77 (=2.77,-0.77) <0.001 77%

Using Bashash et al. (2017)""? McCarthy GCI scores, Valdez Jimenez et al. (2017)”* (Bayley MDI scores),
Cantoral et al. (2021)% (Bayley III cognitive scores), Ibarluzea et al. (2021)% (Bayley MDI scores).

Urinary fluoride 11 —1.78 (=2.78, —0.78) <0.001 75%
Intake 3 —3.28 (=5.87, —0.68) 0.799 0%
Water fluoride 2 —4.77 (-9.09, —0.45) 0.707 0%

Using Bashash et al. (2017)"> McCarthy GCI scores, Valdez Jimenez et al. (2017)* (Bayley MDI scores),
Cantoral et al. (2021)53 (Bayley lll cognitive scores), Ibarluzea et al. (2021)%” (McCarthy GCI scores).

Urinary fluoride 11 —1.90 (—2.86, —0.94) <0.001 73%
Intake 3 —3.28 (=5.87, —0.68) 0.799 0%
Water fluoride 2 —4.77 (-9.09, —0.45) 0.707 0%

Notes:
CI = confidence interval; GCI = General Cognitive Index; MDI = Mental Development Index.
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Beta Weight
Study Exposure 95% ClI (%)
Ding 2011 per 1 mg/L urinary F - 059 -1.08, -0.08] 17.04
Zhang 2015b  per 1 mg/L urinary F — 242 4558, -0.25] 984
Bashash 2017  per 1 mg/L maternal urinary F _— -500[ -853, -147] 551
Cui 2018 per 1 mg/L urinary F —t— 41 281, -0001] 1347
Yu 2018 per 1 mg/L urinary F _— 165 -483, 153] 634
Green 2019 per 1 mg/L maternal urinary F —_— 195 -518, 1.28] 620
Xu 2020 per 1 mg/L urinary F — -0.05[ 163, 152] 1235
Saeed 2021 per 1 mg/L urinary F —— 345 -4.44, -246] 1515
Zhao 2021 per 1 mg/L urinary F —— -1.76[ -2.86, -065] 1461
Overall ? -1.81[-2.80, -0.81]

5

[eFigure 19]. Association Between Individual-level Fluoride Exposure and IQ Scores in Children:

P

Cc ted [122]: See DocO6b Meta-analysis, 6b.C.,

Overall Analysis

Estimates (betas) for individual studies are shown with solid boxes representing the weight, and the pooled estimate is shown as a

solid diamond. Horizontal lines represent 95% Cis for the study-specific betas.

Funnel plot

5
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°
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eFigure 20. Funnel Plot for Studies with Individual-level Exposures
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Regression-based Egger test for small-study effects
Random-effects model
Method: Dersimonian-Laird

H@: betal = @; no small-study effects

betal = -1.86

SE of betal = 1.866
z = -1.88

Prob > |z| = @.3192

eFigure 21. Test for Publication Bias for Studies with Individual-level Exposures
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Subgroup Analyses

Risk-of-bias Subgroup Analysis

Beta Weight
Study Exposure 95% Cl (%)
Higher
Saeed 2021 per 1 mg/L urinary F —a— -3.45] -444  -246] 1515
Heterogeneity: T = 0.00, 1" = %.H = < 3.45] -4.44, 248]
Test of 6 = 6 Q(0)=0.00,p=.
Lower
Ding 2011 per 1 mg/L urinary F - -0.58[ -1.08, -0.09] 1704
Zhang 2015b per 1 mg/L urinary F —_— -2.42[ -458, 025 964
Bashash 2017  per 1 mg/L matemnal urinary F — -500[ -853 -147] 551
Cui 2018 per 1 mg/L urinary F —_— -141] 281, -0.01] 1317
Yu 2013 per 1 mg/L urinary F —_— -1.85] -4.83, 1.53] 634
Green 2019 per 1 mg/L matemmal urinary F _— -185] -5.18, 125 620
Xu 2020 per 1 mg/L urinary F e -005] -1.83, 1.52] 1235
Zhao 2021 per 1 mg/L urinary F —— -1.76[ -286, -0D63 1461
Heterogeneity: T = 0.45, I = 46.18%, H' = 1.86 <> 133 -2.09, -0.57]
Test of 6 = 8: Q(7) = 13.04, p = 0.07
Overall <> -1.81[-2.80, -0.81]

Test of group differences: Q.(1)=11.11, p=0.00

-10 -5 ] 5

eFigure 22. Association Between Individual-level Fluoride Exposure and IQ Scores in Children:
Effect by Risk of Bias
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Exposure Type Subgroup Analysis

Cc ted [124]: See DocO6b_Meta-analysis, 6b.C.,

Beta Weight
Study Exposure 95% Cl (%)
Water
u 20138 per 1 mgiL water F -345[ -11.60, 470] 124
Green 2019 per 1 mgiL water F ———— S529[-10.39, -013) 283
Heterogeneity: T = 0.00, 1 = 0.00%. H = 1.00 e 477[ -9.08, -0.45]
Urine
Ding 2011 per 1 mgiL urinary F - 058 -1.09. -0.03] 1534
Zhang 201506 per 1 mag/L urinary F — -242[ -459 -025] 3867
Bashash 2017  per 1 mg/L maternal urinary F —_— -500[ -853 -1.47] 495
Cui 2018 per 1 mgiL urinary F —a— “141[ -2.81, -0.01] 11.85
Yu 2018 per 1 mgi/L urinary F ——— -185[ 483 153 570
Green 2019 per 1 mgiL maternal urinary F —— -195[ -518 128 557
Hu 2020 per 1 mgiL urinary F Lomo 005 183 152] 1111
Saeed 2021 per 1 mgiL urinary F S -345[ 444 -248] 1364
Zhao 2021 per 1 mgiL urinary F —-— -1.76[ -2.86. 085 1315
Heterogeneity: 7 = 1.45 1° = 76.63%, H' = 425 rs S181[ -2.80, -0.81]
Intake
Green 2019 per 1 mgiday maternal F intake —— -366[ -7.16. -0.16] 500
Till 2020 per 1 mgiday infant F intake (formula) 5381477, 4011 095
Heterogenaity: T = 0.00,1° = 0.00%, H = 1.00 =gl 387[ -7.15. -0.59]
Owerall -2.05] -3.00, -1.11]

-1I5 -1IU- -3 L]
[eFigure 23. Association Between Individual-level Fluoride Exposure and IQ Scores in Children: /{
Effect by Exposure Type page 2 and 3

Page 53




Country Subgroup Analysis

Beta Weight

Study Exposure Q5% Cl (%)
Canada
Green 2019 per 1 mg/L maternal urinary F . -195[-518, 1.28] 6.20
Heterogeneity: 7 = 0.00, I' = %, H' =. ==l -195[-5.18, 1.28]
China
Ding 2011 per 1 ma/L urinary F .- -0.59[-1.09, -0.09] 17.04
Zhang 2015b  per 1 mg/L urinary F —a— -242[-459 -0.25] 064
Cui 2018 per 1 mg/L urinary F ——— -1.41[-2.81, -001] 1317
Yu 2018 per 1 mg/L urinary F —_— -165[-4.83, 153] 634
Xu 2020 per 1 mg/L urinary F —— -0.05[-1.63, 1.52] 1235
Zhao 2021 per 1 mg/L urinary F —e— -1.76[-2.86, -0.65] 1461
Heterogeneity: 7" = 0.20, I" = 32.64%, H' = 1.48 L ] -1.06 [-1.70, -0.42]
Mexico
Bashash 2017 per 1 mg/L maternal urinary F —_— -5.00[-8.53, -1.47] 551
Heterogeneity: 7 = 0.00, 1" = %, H' =. —==TI = -5.00[-8.53, -1.47]
Pakistan
Saeed 2021 per 1 mg/L urinary F —— -345[-4.44 -248] 1515
Heterogeneity: 7 = 0.00, I' = %, H' =. - -3.45[-4.44, -2 48]
Overall -1.81[-2.80, -0.81]

-10 -5 0 5

eFigure 24. Association Between Individual-level Fluoride Exposure and IQ Scores in Children:
Effect by Country

Note: The analyses for publication bias for studies from China, Canada, and Mexico rely on a very small number of studies each
and are not shown.
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Assessment Type Subgroup Analysis

Beta Weight
Study 95% CI (%)
non-CRT-RC Tests
Bashash 2017 _— 500[-853 -147] 551
Green 2019 _— 195[-518, 128 620
Saeed 2021 — 345[-444, -245] 1515
Heterogeneity: 1° = 0.00, I = 0.00%, H* = 1.00 <o -343[-4.35 -252]
CRT-RC Tests
Ding 2011 - -059[-1.09, -0.09] 17.04
Zhang 2015b — 242[-459, 025] 964
Cui 2018 — A41[-281, -0.01] 1317
Yu 2018 —_— 165[-483, 153] 634
Xu 2020 — 0.05[-163, 152] 1235
Zhao 2021 —a— 176[-2.86, -0.65] 1461
Heterogeneity: T = 0.20, I' = 32.64%, H" = 1.43 Ee -1.06[-1.70, -0.42]
Overall -1.81[-2.80, -0.81)

10 5 0 5

eFigure 25. Association Between Individual-level Fluoride Exposure and IQ Scores in Children:
Effect by Assessment Type

Note: The analyses for publication bias for CRT-RC studies and non-CRT-RC studies include only six and three studies,
respectively, and are not shown.

Sex Subgroup Analysis

Beta Weight
Study Gender 95% CI (%)
Female
Green 2019 per 1 mg/L maternal urinary F o e — 240([-253, 733] 549
Wang 2020b  per 1 mg/L urinary F —— -1.38[-2.83, -0.13] 3952
Heterogeneity: 1 = 3.77, I = 52.85%, H = 2.12 i 027[-364, 3.10]
Male
Green 2015 per 1 mg/L maternal urinary F —_— -4.49[-838, -060] 842
Wang 2020b  per 1 mg/L urinary F - -1.04[-2.04, -0.03] 4657
Heterogeneity: 1 = 3.86, |’ = 64.77%, H = 2.84 . 223[-545, 099
Overall -1.27[-2.48, -0.07]

eFigure 26. Association Between Individual-level Fluoride Exposure and IQ Scores in Children:
Effect by Sex

Note: The analysis for publication bias by gender relies on two studies each and are not shown.
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Pre-natal vs post-natal exposure Subgroup Analysis

Beta Weight
Study Exposure 95% Cl (%)
Pre-natal
Bashash 2017  per 1 mg/L maternal urinary F —_— -5.00[ -8.53, -147] 6.04
Green 2019 per 1 mg/L maternal urinary F —_—— -1.95[ -5.18, 1.28] 6.80
Xu 2020 per 1 mg/L urinary F, prenatal F group -0.30[ -8.09, 7.49] 163
Heterogeneity: 7° = 0.22, 1" = 4.49%, H = 1.05 i -3.08] -5.43, -0.72]
Post-natal
Ding 2011 per 1 mag/L urinary F - -0.58[ -1.09, -0.09] 19.05
Zhang 2015b  per 1 mg/L urinary F — -2.42[ -459 -0.25] 1064
Cui 2018 per 1 mg/L urinary F —r— -1.41[ -2.81, -0.01] 1462
Yu 2018 per 1 mg/L urinary F —— -1.65[ -4.83, 153] 695
Xu 2020 per 1 mg/L urinary F, prenatal control group -1.37[-10.88, 815] 112
Saeed 2021 per 1 mg/L urinary F —-— -3.45[ -4.44 -246] 16.89
Zhao 2021 per 1 mg/L urinary F cme -1.76[ -2.86, -0.65] 16.26
Heterogeneity: 7° = 1.41, 1" = 78.14%, H' = 457 < -1.84[ -2.97, -0.72]
Qverall -2.01[ -3.05, -0.97]

-1|[J -5 tl} 10

eFigure 27. Association Between Individual-level Fluoride Exposure and IQ Scores in Children:

Effect by Prenatal vs. Postnatal Exposure
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