Histological and Chemical Studies in Man on Effects of Fluoride

R. A. CALL, M.D., D. A. GREENWOOD, Ph.D., W. H. LeCHEMINANT, M.D., J. L. SHUPE, D.V.M., H. M. NIELSEN, M.S., L. E. OLSON, Ph.D., R. E. LAMBORN, M.S., F. L. MANGELSON, Ph.D., and R. V. DAVIS, B.S.

REVIOUS PATHOLOGICAL and chemical studies (1-8) have dealt with changes in human tissues associated with exposure to various fluoride levels for various periods. The primary aim of this study, conducted from September 1955 through August 1960, was to provide additional information on possible changes in human tissues associated with such exposure and to obtain chemical data on the accumulated concentration of fluoride and other chemical constituents in the bodies of deceased persons who had lived in industrial areas of Utah for various periods as well as in those who had lived in nonindustrial areas of the State for various periods of time. The majority of the subjects were from Utah County, where industrial and nonindustrial establishments using high temperatures in treating materials containing fluorine were

Dr. Call is a pathologist and director of laboratories, Dr. LeCheminant is a pathologist, and Mr. Davis was a research assistant in the department of pathology of Utah Valley Hospital and of Utah State Hospital, Provo. Dr. Greenwood is professor of biochemistry and pharmacology and Mr. Nielsen and Dr. Olson are assistant professors, departments of chemistry and of veterinary science, Utah State University, Logan. At the time of the study Mr. Lamborn and Dr. Mangelson were research assistants in these departments, and Dr. Shupe (now research veterinarian, U.S. Department of Agriculture, Logan) was professor of veterinary science.

This investigation was supported in part by research grants GS-4030 R, S-4-C, S-83 (C-1), and S-83 (C-2) of the National Institutes of Health, Public Health Service.

known to have liberated fluoride into the air in elevated concentrations.

Chronic fluoride intoxication has occurred in some cattle and sheep maintained near major sources of fluoride emission in Utah County after they grazed on, or were fed, forage containing elevated levels of fluoride for prolonged periods. Certain vegetation has also been adversely affected by the elevated fluoride concentrations. Significant differences, however, exist in the relative exposure to fluoride of man and animals living in the same area. Their basic nourishment varies widely. Much of man's diet originates outside his immediate vicinity, while most of the animal feeds originate within the area. In addition, much of the industrially expelled, airborne fluoride settles on vegetation as a surface deposit, which man usually washes from the fruits and vegetables he eats. The study reported here was initiated in part to try to determine whether this apparent difference in exposure would lessen the effect of fluoride on man.

Values for fluoride in air samples collected by impinger at Utah State Hospital at Provo ranged from 0.10 to 0.80 microgram per cubic meter of dry air, with average yearly values of 0.24 microgram per cubic meter of dry air at 760 mm. Hg. pressure and 21.1° C. during the period September 1, 1957, to June 30, 1960. Similar air fluoride values were obtained at the Salt Lake City airport. At Utah State University, Logan, however, a lower average value of 0.06 (0.01 to 0.20) microgram per cubic meter of dry air was obtained under comparable conditions and during the same period.

Table 1. Fluoride and ash content in dry, fat-free bones of deceased study subjects 15 years of age or older at death who had resided in Utah, Salt Lake, or Weber Counties, Utah, at least 10 years

			Calva	arium	Ster	num	Ri	b	Iliac	crest	Verte	ebrae
Subject number and sex	Age (years)	Residence (years) ¹	Ppm F	Per- cent ash	Ppm F	Per- cent ash	Ppm F	Per- cent ash	Ppm F	Per- cent ash	Ppm F	Per- cent ash
1, F 2, F 3, F 4, M 5, M 6, M	71 51 85 61 85 60	32 U 22 U 85 UW 61 U 24 U 12 U	416 600 336 840	64.4 66.0 66.9 67.1	708 394 692 402 786 520	54.764.248.150.057.750.1	$772 \\ 320 \\ 608 \\ 274 \\ 580 \\ 465 \\ 450 \\ 100 $	$\begin{array}{c} 60.\ 2\\ 54.\ 0\\ 63.\ 0\\ 60.\ 4\\ 59.\ 5\\ 61.\ 0\\ \end{array}$	244 598 312 570	59.762.660.661.9	684 484 760 394 620	58.3 55.4 53.1 56.0 54.8
7, M 8, F 9, M 11, M	53 73 66 80	19 U 11 U 29 U 16 UW	620 550	64. 7 63. 6	427 705 368 565	50. 7 54. 6 56. 6	450 630 366 396	62.3 62.6 59.0 57.6	605 250 420	58.9 57.9	469 780 	57.4 54.3 55.6 55.5
14, F	83 42 60 45 16 56 64 70 74 55	10 U 42 U 22 U 26 U 16 U 10 U 64 U 40 U 20 U 22 UW	440 516 636 278 350 320	63. 4 63. 2 61. 3 63. 9 66. 9 69. 1 66. 6 66. 8	526 348 730 690 91 273 1, 370 1, 310 300 343	49. 4 49. 7 55. 8 48. 3 54. 8 54. 0 52. 8 57. 0 54. 1 48. 5	540 258 614 598 95 223 1, 190 1, 176 324 255	62.9 62.2 56.7 60.1 60.2 62.3 59.9 64.5 61.8 65.5	$560 \\ 303 \\ 570 \\ 630 \\ 56 \\ 222 \\ 1, 165 \\ 264 \\ 292$	57.2 58.9 58.3 56.5 56.3 56.1 62.7 45.5 61.8	369 616 744 87 279 1, 550 945 315 363	$\begin{array}{c} 47.1\\ 54.5\\ 50.6\\ 54.4\\ 56.6\\ 52.4\\ 58.8\\ 61.7\\ 50.1\\ 52.5\end{array}$
27, F	79 66 78 55 45 73 47 80 50 84	60 U 65 U 42 U 25 US 16 U 73 U 46 WU 14 SU 50 U 73 U	400 600 550 960 462 532 800	$\begin{array}{c} 66.8\\ 67.7\\ 67.0\\ 68.0\\ 68.0\\ 68.0\\ 68.6\\ 67.0\\ 65.4 \end{array}$	416 240 470 850 250 500 580 840 316	57.8 55.6 51.7 57.5 59.1 57.5 57.9 53.1 61.9	364 343 500 544 768 260 448 494 900	64. 6 64. 4 59. 8 64. 2 63. 5 62. 7 61. 2 58. 0 60. 8 60. 8	396 296 462 552 482 700 600	62. 1 62. 2 58. 6 61. 6 61. 6 62. 0 57. 4 59. 8	485 336 410 654 260 482 474 740 302	54. 3 40. 0 61. 0 58. 0 53. 2 52. 6 52. 2 53. 0
39, M 41, F 42, M 43, F 44, M 46, F 47, F 48, M 50, F 51, M	49 69 75 49 61 85 26 35 71 82	38 U 69 U 18 U 28 U 37 U 58 U 26 U 29 U 35 U 60 S	364 478 	65. 3 	220 334 275 358 255 338 282 1,608 522	58.5 60.6 56.1 55.1 58.7 59.5 56.5 44.4 59.9	220 330 298 203 456 118 236 1,440 558	59.0 61.9 60.2 62.8 63.0 64.6 60.3 64.0 65.2	198 346 345 304 260 266 595	60. 2 61. 6 51. 5 60. 3 60. 4 	350 300 292 255 510 153 260 896 570	59. 2 57. 5 61. 2 52. 7 56. 3 60. 4 50. 1 53. 8 56. 8
52, M 54, F 55, F 55, F 56, F 57, F 58, M 59, M 60, F 61, M 62, F	38	28 U 48 U 78 U 66 SU 38 US 55 U 67 U 11 U 39 W 67 W	238 718 499 271 220	64. 0 63. 7 68. 4 64. 1 68. 1	364 242 606 496 348 318 318 318 733 434	57.4 61.7 44.1 50.9 55.2 47.0 57.4 49.8	296 180 318 373 456 317 292 315 735 414	60. 1 57. 5 61. 4 59. 2 59. 3 58. 7 60. 8 55. 4 60. 1	204 535 464 260 235 562 420	61.2 58.0 61.0 61.0 59.0 56.5 58.6 54.8	364 268 350 704 338 370 274 330 789 432	56.7 59.7 42.3 53.4 54.1 47.8 52.2 52.6 42.5
64, M 65, M 66, F 71, M 72, F 74, F 75, F 76, M 78, F 78, F 74, S 76, M 78, F 76, M 76, M 78, F 76, M 76, S 76, S 76, S 76, S 76, S 77, S 78, S 78	49 55 72 25 43 53 66	11 S 38 W 72 W 25 SU 10 S 53 SU 30 U 83 SU 33 U 78 U	426 600 469 198 1,090 	$\begin{array}{c} 64.7\\ 64.7\\ 64.0\\ 63.8\\ \hline \\ 67.7\\ \hline \\ 66.0\\ 65.4\\ 64.8\\ \end{array}$	431 551 763 199 790 900 813	60. 4 58. 5 61. 6 58. 0 55. 4 51. 7 60. 1	$\begin{array}{r} 300\\ 480\\ 575\\ 145\\ 750\\ 1,095\\ 430\\ 840\\ 773\\ 990 \end{array}$	$\begin{array}{c} 66.\ 7\\ 62.\ 2\\ 62.\ 2\\ 62.\ 8\\ 61.\ 9\\ 63.\ 7\\ 64.\ 5\\ 60.\ 6\\ 61.\ 1\\ 56.\ 8\end{array}$	481 196 700 1, 200 295 900 758 875	$\begin{array}{c} 60.9 \\ \hline 61.9 \\ 60.2 \\ 54.1 \\ 62.9 \\ \hline 56.1 \\ 59.5 \\ 60.9 \end{array}$	300 616 896 249 650 1, 340 445 900 875 988	59.8 58.5 61.8 56.6 53.9 55.5 $50.354.257.0$

			Calvarium		Sternum		Rib		Iliac crest		Vertebrae	
Subject number and sex	Age (years)	Residence (years) ¹	Ppm F	Per- cent ash	Ppm F	Per- cent ash	Ppm F	Per- cent ash	Ppm F	Per- cent ash	Ppm F	Per- cent ash
79, M	57 59 60 17 72 70 15 75 31 77	40 U 38 U 17 U 71 US 20 U 15 U 75 U 31 U 15 S	225 375	 67.3 61.3		64. 3	883 470 400 425 270 1, 895 230 338 300	57.0 61.7 58.5 53.2 54.7 63.1 62.4 54.0 61.0	875 556 340 350 260 1, 630 300 1, 550	$\begin{array}{c} 60.8\\ 63.7\\ 58.0\\ 58.6\\ 57.1\\ 62.4\\\\ 57.4\\ 62.5 \end{array}$	$990 \\ 502 \\ 595 \\ 413 \\ 250 \\ 2,025 \\ 250 \\ 425 \\ 425 \\ 425 \\ 1,665$	65. 5 56. 2 54. 7 56. 0 54. 4 52. 9 52. 2 59. 0
98, M	57 88 84 64 82 76 79 32 61 79	40 S 63 SU 78 S 64 U 34 U 12 U 53 U 32 U 35 US 79 U		 68.6	1, 260 1, 075 1, 100	 58. 4	$1, 165 \\ 813 \\ 733 \\ 733 \\ 730 \\ 1, 070 \\ 1, 170 \\ 750 \\ 210 \\ 730 \\ 440 \\ $	66. 2 62. 6 63. 0 58. 2 60. 3 61. 3 	875	67.5 58.3	1, 070 1, 030 800 1, 675 1, 315 1, 340 780 240 775	59.5 54.2 49.9 58.6 59.0 57.4 52.9 63.0 59.2 58.2
114, M 116, M 117, F 118, M 125, M 127, F 128, F 130, M	70 77 75 79 69 28 80 65	28 U 52 U 74 U 79 U 40 U 24 U 10 U 16 U		67.2			$\begin{array}{c} 675 \\ 650 \\ 410 \\ 985 \\ 635 \\ 100 \\ 285 \\ 665 \end{array}$	$\begin{array}{c} 62.\ 4\\ 60.\ 7\\ 59.\ 3\\ 59.\ 7\\ 63.\ 0\\ 61.\ 7\\ 59.\ 8\end{array}$			$740 \\ 650 \\ 470 \\ 1,030 \\ 635 \\ 175 \\ 365 \\ 675$	$\begin{array}{c} 60.\ 0\\ 58.\ 7\\ 58.\ 7\\ 54.\ 8\\ 58.\ 6\\ 58.\ 6\\ 58.\ 5\\ 58.\ 2\end{array}$
Mean Standard devia- tion Standard error	61. 8 18. 0 1. 9	40. 1 22. 5 2. 4	560 251 39	65.7 1.9 .19	613 388 48	55.6 4.7 .5	537 328 36	61.0 2.9 .8	510 314 40	59.3 3.3 .4	615 339 38	55. 4 4. 4 . 5

Table 1. Fluoride and ash content in dry, fat-free bones of deceased study subjects 15 years of age or older at death who had resided in Utah, Salt Lake, or Weber Counties, Utah, at least 10 years—Continued

¹S-Salt Lake County; U-Utah County; W-Weber County.

NOTE: (_____) indicate no chemical determination was done. For results of determinations of calcium and phosphorus, see Documentation Note on page 538.

Analysis of Utah County water supplies revealed less than 0.5 ppm of fluoride. Similar studies on alfalfa and other animal forage crops indicated from about 5 ppm to more than 30 ppm for fluoride on a dry basis. These levels varied widely from area to area within the county. The fluoride levels (about 0.1 ppm to more than 1.0 ppm and usually less than 0.5 ppm on a fresh basis) on locally grown human consumables were consistently lower than those found on forage crops. These differences in fluoride levels in sources of nourishment noticeably affect the relative exposure of animals and man to fluoride even though they live in close proximity.

In recent years, certain industries in Utah County and others in the State have used procedures and equipment which have significantly reduced the output of fluorides.

Materials and Methods

Studies were conducted on bodies of 127 patients consecutively autopsied by Call and LeCheminant at Utah Valley Hospital and Utah State Hospital except that those for whom no information on residence was available were skipped. Routine autopsies were made, when possible, on unembalmed bodies. Some bodies, however, had been arterially embalmed, but not trocarred, before examination. Samples of embalming fluid from these bodies were analyzed and found to contain no fluoride.

A precise protocol was followed which indicated the location in the body and the type and quantity of tissues to be obtained for histologic study and chemical analysis. The tissues studied were of male and female persons, 15 years of age or older, who had resided at least 10 years in an industrial area of Utah within Utah County, Salt Lake County, or Weber County. This protocol was similar to that used by other investigators (4). Data on persons not meeting these criteria are included in this report only for purposes of comparison.

Examination of each body was made with special attention to palpable exostoses and other abnormal bone formations and deformities not associated with trauma. Complete autopsies, including examination of the brain, were performed on bodies of 62 of the 127 subjects. Permission for removal of the brain was not granted for the remaining 65 subjects. Tissues of all organ samples were examined histologically. Special efforts were made in the processing of the bone sections to preserve the periosteum, cortex, and marrow in their proper anatomical relationship. The following tissues were analyzed for fluoride and dry matter: calvarium, lumbar vertebrae, sternum, sixth rib, iliac crest, exostoses (if present), thyroid, aorta, kidney, lung, liver, spleen, heart, pancreas, and Specimens collected from September brain. 1958 through August 1960 were limited to the bones, thyroid, aorta, and kidneys.

Calcium, phosphorus, and ash determinations were made on dry, fat-free bones. All specimens were maintained in a frozen state until chemical analyses were made. Before chemical analysis, the bones were cleaned of adhering soft tissues, broken into small pieces, weighed, and dried in a vacuum oven for 5 hours at 95–100° C. or to constant weight. Some samples were dried overnight in the oven at the same temperature range. Fat was extracted from the dried samples with diethyl ether in a Goldfisch apparatus for 5 hours or until constant weight was obtained. The bone fragments were finely ground, and weighed samples were ashed in a muffle at 550° C. for about 6 hours or to constant weight. The bone fluoride was isolated essentially by the method of Willard and Winter (9), with modifications as given by the Association of Official Agricultural Chemists (10). Estimation of the fluoride was made by the spectrophotometric method of Megregian (11) as modified by Nielsen (12).

The soft tissues were ground, mixed, weighed, dried, and ashed in platinum dishes in the presence of calcium oxide of low fluoride content. Fluoride was separated from ashed samples essentially by the procedure of Willard and Winter (9) and determined by the procedure of Nielsen (12). Dry matter determinations were made on weighed soft tissues by heating them in a vacuum oven for 5 hours at 95–100° C. or to constant weight. Some samples were dried overnight in the oven at the same temperature range. Phosphorus was determined colorimetrically by the method of Chen and associates (13). Calcium was determined by a modification of the method of Patton and Reeder (14).

The majority of the 127 patients included in this study had died suddenly or shortly after becoming ill. Major causes of death were coronary heart disease, pneumonia, cancer, kidney disease, and trauma. From bodies of the 127 subjects, 1,220 specimens were obtained for fluoride analysis. All specimens were also examined histologically. Special attention was given to the histology of bones and intervertebral cartilages. Of the 442 bones and cartilages studied, none showed any of the pathological changes which have been attributed to fluorosis (1, 2, 15, 16).

Results and Discussion

Histologic findings in the present study are in agreement with those of Geever and associates (4), who reported no abnormal histologic changes traceable to fluoride in the tissues of 37 persons who died after having lived at least 10 years in communities with 1 to 4 ppm of fluoride in the water supply.

The levels of fluoride and ash in dry, fat-

free bones of persons in our study meeting the criteria of exposure and for others not meeting it are shown in tables 1 and 2. The mean fluoride concentration in bones of those meeting the criteria is 568 ppm in comparison with a mean of 446 ppm for the other group. This difference is significant (P < 0.01). The average age of persons meeting the criteria (61.8 years) is, however, 18.3 years older than of those not meeting the criteria (43.5 years). Since age has been shown to be a factor in fluoride storage (17), age differences may account in part for

Table 2. Fluoride and ash content in dry, fat-free bones of deceased study subjects who were less than 15 years of age at death or who had resided in Utah, Salt Lake, or Weber Counties, Utah, less than 10 years

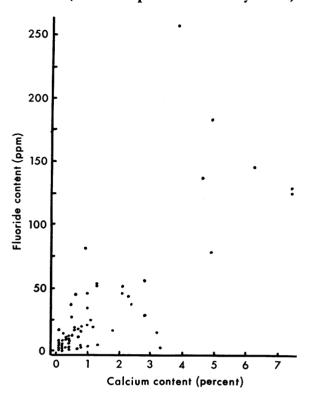
Subject	Age	Resi-	Resi- dence ¹		Sternum		Rib		Iliac crest		Vertebrae	
	(years)	(years)	F	Ash	F	Ash	F	Ash	F	Ash	F	Ash
10, M 12, M	67 41	3 U 0	498	63. 3	480	50. 6	$\begin{array}{c} 460\\ 242 \end{array}$	52.6 58.5	466	53. 2	472 238	37. 9 54. 6
13, F 16, M 37, F	² 0 42 4	$egin{array}{ccc} 0 \\ 6 & \mathrm{U} \\ 4 & \mathrm{U} \end{array}$	 190	63. 3	$57\\500$ 272	57.1	$477 \\ 232 \\ 276$	60. 5 54. 5	449	56. 8 	$\begin{array}{r} 454\\234\end{array}$	55. 8 50. 7
40, M 45, M 49, M 53, M	55 77 17 25	$egin{array}{c} 0 \\ 0 \\ 0 \\ 2 \end{array} \mathrm{U} \end{array}$	480 138	65. 4 64. 0	$ \begin{array}{r} 272 \\ 371 \\ 143 \\ 229 \end{array} $	59. 4 60. 2 58. 1	$ \begin{array}{r} 276 \\ 321 \\ 120 \\ 173 \end{array} $	64. 4 63. 9 60. 5	339 118	59. 2 61. 2	$397 \\ 128 \\ 323$	56. 2 0 59. 3
63, M 68, F	55 78	0 0			260 369	59. 8	414 304	63. 5 62. 5	394 347	61. 0 62. 5	323 473 371	55. 6 56. 9
69, M 70, M 73, F	16 28 8	5 U 0 8 U	$\frac{600}{425}$	66. 0 61. 8	425	61. 0	700 400	63. 6 62. 4	725	58. 5	$ \begin{array}{r} 371 \\ 650 \\ 410 \\ 448 \\ \end{array} $	57.5 60.7 57.1
77, F 83, F 86, M	61 17 22	7 Ŭ 8 U 0			1, 115	54.1	$1,300 \\ 135 \\ 200$	59. 0 60. 4 68. 3	$740 \\ 165 \\ 275$	50. 3 59. 2 62. 5	$1,075 \\ 160 \\ 338$	52.8 56.9 59.4
88, M 89, M 90, M	$50 \\ 4 \\ 4$	2 S 0 0	625 	60. 9 	 <u>50</u> -		$625 \\ 150 \\ 40$	61. 0 61. 3	583 	57. 3	$\begin{array}{r} 623\\125\\ \end{array}$	51. 7
92, M 95, M	18 17	0 0	$\begin{array}{c} 225\\ 235 \end{array}$	61. 5 60. 3	218	56. 0	$\begin{array}{c} 175\\ 205\\ 220\end{array}$	58. 9 54. 3			$\begin{array}{c} 205\\ 290\\ 225 \end{array}$	54. 6 55. 6
96, M 99, F 105, M 108, F	17 27 63 8	0 0 0 6 U	 125	 62. 3	$180 \\ 625 \\ 558$	57. 0 58. 3	$\begin{array}{r} 220\\ \overline{}\\ 559\\ 100 \end{array}$	58.9 67.0 62.2 56.4	$183 \\ 500 \\ 535$	57. 1 61. 8 60. 9	$235 \\ 533 \\ 559 \\ 150$	53. 8 59. 1 55. 1 58. 9
109, F 111, F 115, F	71 82 85	9 Ŭ 0 0			590 605 860	56. 7 56. 2 57. 9	490 500 900	60. 9 57. 7 61. 6	450 535	61. 7 60. 4	$590 \\ 650 \\ 1, 250$	61. 6 56. 8 58. 3
119, M 120, F	62 77	0			600	 52. 7	870 525	58. 1 58. 5			1, 125 675	61. 7 54. 4
121, M 122, M 123, M	80 60 60	0 0 0	710	63. 9 	655 640 	52. 0 54. 3	450 525 890	59. 0 62. 2 60. 4			585 1, 275	56. 8 57. 8
124, M 126, M 129, M	75 65 43	0 0 U 9 US					555 255 	60. 3 62. 3			$560 \\ 285 \\ 635$	53.3 59.1 56.6
Mean Standard deviation_ Standard error	43. 5 26. 3 4. 8	2. 32 3. 3 . 4	$387 \\ 211 \\ 63$	63. 0 1. 7 . 6	$\begin{array}{r} 445\\150\\32\end{array}$	56. 8 3. 2 . 8	418 305 53	60. 5 3. 3 . 6	431 188 44	58. 9 3. 5 . 9	501 307 53	56. 0 4. 4 . 8
91 X ³ 103 X ³	27. 0 0	25 U 0	500 30	63. 2 62. 0								

¹S—Salt Lake County; U—Utah County. Subjects with 0 years of residence include transients who never resided in these counties and persons resident less than 1 year.

³ Combined bone specimens.

Note: (_____) indicate no chemical determination was done. For results of determinations of calcium and phosphorus, see Documentation Note on page 538.

² Less than 1 year old at time of death.


771-803-65-5

the differences in fluoride concentration between the two groups in our study. Significance of differences in means were calculated according to Fisher's t test. The bone fluoride levels we found are within the general range reported for normal subjects in other studies (5, 6). A statistical comparison of mean bone fluoride levels for male and female subjects and controls in our study revealed no significant difference (P>0.05).

Comparison of fluoride content in the soft tissues of persons meeting the criteria of exposure to fluoride with the content in soft tissues of persons not meeting the criteria revealed no significant difference (P>0.05). This finding indicates that fluoride is not stored in the soft tissues in significant quantities (table 3). The fluoride content was higher in the aorta than in any of the other soft tissues studied, a result in agreement with that of Smith and associates (7). An increase in the fluoride content of the aorta was associated with calcification, as indicated by an increase in the calcium content of the tissue (fig. 1). This increase parallels the degree of aortic arteriosclerosis and calcification. The Pearson product-moment correlation coefficient for this relationship (based on analysis of 60 aortas) is 0.93.

When we correlated bone fluoride levels with the patient's disease, it soon became evident that most of the higher levels were found in patients with an advanced chronic renal disease. Giv-

Figure 1. Relationship between the concentrations of fluoride and calcium in the aorta (results expressed on a dry basis)

ing particular attention to these cases, we classified and studied 44 of them according to type and severity of renal lesions. Table 4 shows this classification along with the patients' re-

Table 3. Fluoride content (ppm) in soft tissues of subjects who met criteria of exposure tofluoride and in tissues of others who did not

Tissue	Met	exposure crit	eria ¹	Did not meet exposure criteria ²				
	Maximum	Minimum	Mean	Maximum	Minimum	Mean		
Brain_ Thyroid_ Heart_ Aorta_ Lung_ Liver_ Spleen_ Pancreas_ Kidney_	$\begin{array}{c} 6.1\\ 23.5\\ 8.1\\ 258.0\\ 17.0\\ 7.7\\ 8.6\\ 8.2\\ 10.0 \end{array}$	$\begin{array}{c} 0.2 \\ .3 \\ .4 \\ .6 \\ .6 \\ .2 \\ .2 \\ .3 \\ .2 \end{array}$	1.85.22.529.43.91.61.71.82.9	$\begin{array}{c} 3.6\\ 8.1\\ 7.0\\ 185.0\\ 3.0\\ 3.7\\ 5.0\\ 4.5\\ 5.6\end{array}$	$\begin{array}{c} 0.4 \\ .1 \\ .2 \\ .8 \\ 1.0 \\ .2 \\ .3 \\ .4 \\ .6 \end{array}$	1.54.01.928.23.51.41.81.72.3		

¹ Were 15 years of age or older (mean age 61.8 years) and had resided in Utah, Salt Lake, or Weber County in State of Utah at least 10 years (mean years of residence 40.1).

² Less than 15 years of age at death or had resided less

than 10 years in Utah, Salt Lake, or Weber County (mean age in years 43.5 and mean years of residence 2.32).

Note: See Documentation Note on page 538.

Table 4. Age, kidney weights, and mean content of fluoride and ash in dry, fat-free bones of subjects with kidney disease

Disease classification and subject's number	Age		v weights ams)	Mean bone levels		
	8-	Right	Left	Ppm fluoride	Percent	
Chronic pyelonephritis, bilateral, marked:	C A	60	60	1 970	59.0	
23 50	64 71	60 100	60 80	$ \begin{array}{c c} 1,370\\ 1,315 \end{array} $	58.9 54.1	
86	$\dot{70}$	150	30	1,800	58.3	
106	75 44	95	75	1, 290	61. 5 56. 6	
129 1	44		100	635	50. 0	
Chronic pyelonephritis, bilateral, slight to moderate: 27	79	110	00	412	61.1	
57	38	225	90 280	412	53.8	
66	72	$\overline{125}$	120	663	62.3	
113	79	140	100	440	59.1	
114 116	70 77	$\begin{array}{c}110\\165\end{array}$	150 175	707 624	61. 2 60. 8	
118	75	200	200	1,007	57.0	
120	77	140	80	600	55. 2	
124	75	130	150	558	56.8	
126	65	150	190	255	60. 7	
Chronic pyelonephritis, unilateral:	05		010	00 F		
5 55	85 78	30 70	210 185	697 495	60. 2 55. 7	
74	66	100	165	390	64. 5	
119	62	135	70	997	58.2	
Acute glomerulonephritis:						
38	84	170	150	309	58.9	
81	$\begin{array}{c} 60\\ 31 \end{array}$	180		445	57.4 56.9	
94	91	130	130	342	50.9	
Chronic glomerulonephritis:	96	00	100	910	61 E	
47 83	$\begin{array}{c} 26 \\ 17 \end{array}$	90 90	100 95	$\begin{array}{c} 219 \\ 153 \end{array}$	$61.5 \\ 58.8$	
Lower nephron nephrosis:						
	16	190	210	82	57.0	
48	35	185	190	259	55.6	
84	72	180	180	260	55.9	
8689	$\begin{array}{c} 22\\ 4\end{array}$	$\begin{array}{c} 270 \\ 150 \end{array}$	220 155	$\begin{array}{c} 271 \\ 137 \end{array}$	62.4 61.3	
	т	150	100	107	01. 5	
Arteriolonephrosclerosis: 45	77	100	150	382	60. 9	
46	85	70	50	481	00. 9	
78	80	140	100	921	59.9	
80	59	180	180	509	60.1	
97 100	77 89	$\begin{array}{c} 160 \\ 100 \end{array}$	$\begin{array}{c c} 140\\ 170\end{array}$	1, 673 973	60.5 61.4	
107	79	100	130	935	56.5	
109	71	200	200	530	60. 2	
111128	81 80	$\begin{array}{c} 130 \\ 150 \end{array}$	120 140	$\begin{array}{c} 572\\325\end{array}$	57. 8 60. 1	
Polycystic disease: 77 Glomerulosclerosis, intercapillary: 104	$\begin{array}{c} 61 \\ 82 \end{array}$	$\begin{array}{c} 250 \\ 250 \end{array}$	300 290	1,057	54. 0 59. 2	
GIOMOI HIOBUIGI UDID, IIIUGI UAPIIIAI Y, IUT			290 320	$\begin{array}{c c}1,162\\137\end{array}$	59. 2 60. 8	
Glomerulosclerosis of lupus ervthematosus: 127	28	340				
Glomerulosclerosis of lupus erythematosus: 127 Hydronephrosis due to tumor extension (no pyelonephritis	28	340		ĺ	00.0	
Glomerulosclerosis of lupus erythematosus: 127	28 60 8	340 280 170	230 230	1, 082 125	56. 8 59. 2	

¹ Congenital polycystic disease also present.

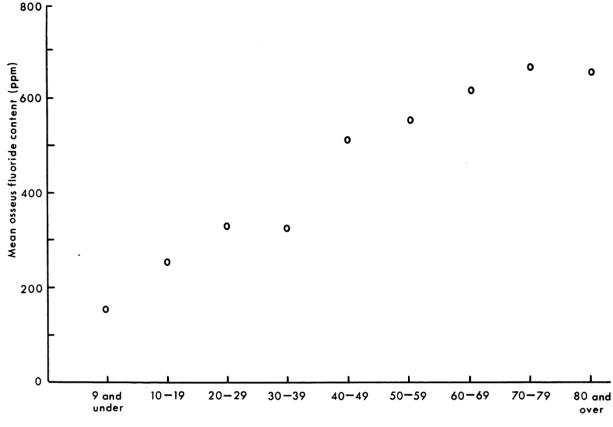
NOTE: For mean bone levels of calcium and phosphorus, see Documentation Note on page 538.

spective kidney weights and the mean levels of fluoride and ash in their bones. Kidney lesions were the primary cause of death in 11 (8.7 percent) of the 127 subjects; lesions of varying degrees were observed in 44 (or 34.6 percent).

We found the highest bone fluoride levels in cases of older adults with the end-stage kidney of bilateral pyelonephritis and in single cases of polycystic disease, intercapillary glomerulosclerosis, and hydronephrosis due to tumor extension. Similar levels were found in scattered cases of arteriolonephrosclerosis and moderately advanced chronic pyelonephritis. Mean bone fluoride levels of persons with kidney disease, by disease group, were compared with cases of the corresponding age group without kidney disease (table 5). Bone-fluoride levels were significantly higher (P < 0.01 in 5 subjects with marked chronic bilateral pyelonephritis than in 16 subjects in the same age group (60-69 years) without kidney disease. Three subjects with acute glomerulonephritis had lower bone fluoride levels (P=0.05) than 16 subjects without kidney disease, all in the age group 50-59 years. A similar observation was made in the age group 20-29 years, in which two subjects who had chronic glomerulonephritis were found to have lower levels than six subjects without kidney diseases (P < 0.05). The highest levels were in the normal range, and no disease associated with fluorosis was evident.

Possible differences in fluoride metabolism and its patterns of deposition in bones may exist in chronic renal disease. Further study and comparison of fluoride levels in these diseases are needed to evaluate the many other possible factors in the wide differences in bonefluoride levels in this small collection of cases.

An apparent correlation between age of patients and the fluoride content of their bones has been noted by other investigators. Our results indicate that the fluoride content of bone increases with age (fig. 2) and that fluoride concentration tends to level off at the older ages.


Summarv

The presence of elevated concentrations of fluorides in the atmosphere has been associated with changes in certain plants and an increase in the fluoride content of forage in certain areas in Utah. Long-term ingestion of such forage by some animals has produced changes characteristic of fluorosis in some of them. It seemed important to determine if man was also

Table 5. Comparison of mean fluoride content of dry, fat-free bones of subjects who had kidney disease with content in bones of persons in corresponding age groups without kidney disease

Disease		With l	kidney d	lisease		w	t test				
	Mean age	Num- ber of	Osseous fluoride (ppm)			Corre- spond- ing age		Num- ber of	Osse		
	(years)	sub- jects	Mean	SD	SE	group (years)	sub- jects	Mean	SD	SE	
Pyelonephritis, chronic, bilat- eral, marked Pyelonephritis, chronic, bilat-	65	5	1, 282	417	186	60–69	16	557	330	82	¹ 3. 6
eral, slight to moderate Pyelonephritis, chronic unilat- eral Glomerulonephritis, acute Glomerulonephritis, chronic	71 73 58 21 30	$\begin{array}{c c}10\\4\\3\\2\\5\end{array}$	570 645 365 186 202	206 267 71 47 87	65 134 41 33 39	70-79 70-79 50-59 20-29 30-39	15 15 16 6	538 538 551 374 315	258 258 313 141	67 67 78 58	.3 .7 22.1 32.8
Lower nephron nephrosis Arteriolonephrosclerosis Other renal diseases	50 78 48	10 5	730 713	407 532	39 129 238	30-39 70-79 40-49	15 11	538 449	$\begin{array}{c} 258\\221\end{array}$	67 67	1. 3 . 9

¹ Different at P < 0.01. ² Different at P = 0.05. ³ Different at P < 0.05.

Figure 2. Relationship between age and osseous fluoride content in subjects meeting exposure criteria

Age at death (years)

being adversely affected. In this investigation, 127 human bodies were autopsied and studied for gross, histological, and chemical evidence of fluoride intoxication. Eighty-eight of these deceased persons came from geographic areas known to have had elevated fluoride levels in the atmosphere and forage. Analyses for fluoride, calcium, phosphorus, and ash were made on the calvarium, sternum, rib, iliac crest, and lumbar vertebrae. Determinations for fluoride and dry matter were made on the brain, heart, lungs, thyroid, aorta, liver, spleen, pancreas, and kidney.

The highest fluoride levels were observed in older adults showing the end-stage kidney of bilateral pyelonephritis and polycystic disease. Average levels were found in subjects with unilateral pyelonephritis and in subjects with pyelonephritis with only slight to moderate disease. The highest fluoride levels found, in subjects with the most severe kidney disease, were

Vol. 80, No. 6, June 1965

within the normal range, and no disease associated with fluorides was evident. Because the number of cases of chronic renal disease in this series was limited, further studies seem advisable.

Data accumulated in this study indicate that the levels of fluorides to which Utah residents in the area studied had been exposed were not responsible for gross or histological changes in soft tissues or bones.

REFERENCES

- Roholm, K.: Fluorine intoxication. A clinicalhygienic study. H. K. Lewis, & Co., Ltd., London, 1937, pp. 180-194.
- (2) Bauer, J. T., Bishop, P. A., and Wolff, W. A.: Pathologic changes of bone in chronic fluorine poisoning. Bull Ayer Clin Lab 3: 67-72, June 1937.
- (3) Geever, E. F., Leone, N. C., Geiser, P., and Lieberman, J. E.: Pathologic studies in man after prolonged ingestion of fluoride in drinking

water. I. Necropsy findings in a community with a water level of 2.5 ppm. J Amer Dent Assoc 56: 499-507, April 1958.

- (4) Geever, E. F., Leone, N. C., Geiser, P., and Lieberman, J. E.: Pathologic studies in man after prolonged ingestion of fluoride in drinking water. Public Health Rep 73: 721-731, August 1958.
- (5) Zipkin, I., McClure, F. J., Leone, N. C., and Lee, W. A.: Fluoride deposition in human bones after prolonged ingestion of fluoride in drinking water. Public Health Rep 73: 732-740, August 1958.
- (6) McClure, F. J., McCann, H. G., and Leone, N. C.: Excessive fluoride in water and bone chemistry. Comparison of two cases. Public Health Rep 73: 741-746, August 1958.
- (7) Smith, F. A., Gardner, D. E., Leone, N. C., and Hodge, N. C.: The effects of the absorption of fluoride. V. The chemical determination of fluoride in human soft tissues following prolonged ingestion of fluoride at various levels. AMA Arch Industr Health 21: 330-332, April 1960.
- (8) U.S. Public Health Service: Fluoride drinking waters. Edited by F. J. McClure. PHS Publication No. 825. U.S. Government Printing Office, Washington D.C., 1962.
- (9) Williard, H. M., and Winter, O. B.: Volumetric method for the determination of fluoride. Ind & Eng Chem (Analytical ed.) 5: 7-10, January 1933.
- (10) Association Official Agricultural Chemists: Official methods of analysis, Ed. 7. Association Official Agricultural Chemists, Washington, D.C., 1950, pp. 389–396.

- (11) Magregian, S.: Rapid spectrophotometric determination of fluoride with zirconium-eriochrome cyanine R lake. Anal Chem 26: 1161– 1166, July 1954.
- (12) Nielsen, H. M.: Determination of microgram quantities of fluoride. Anal Chem 30: 1009– 1011, May 1958.
- (13) Chen, P. S., Jr., Toribara, T. Y., and Warner, H.: Micro-determination of prosphorus. Anal Chem 28: 1756–1758, November 1956.
- (14) Patton, J., and Reeder, W.: New indicator for titration of calcium with (ethylenedinitrilo) tetra-acetate. Anal Chem 28: 1026-1028, June 1956.
- (15) Shupe, J. L., et al.: Pathology of chronic bovine fluorosis. In Proceedings of the annual meeting of American Veterinary Medical Association, Chicago, 1955, pp. 195–201.
- (16) Weinmann, J. P., and Sicher, H.: Bone and bones, fundamentals of bones biology. Ed. 2, C. V. Mosby Co., St. Louis, 1955, pp. 277–284.
- (17) Smith, F. A., Gardner, D. E., and Hodge, H. C.: Age increase in fluoride content in human bone. Fed Proc 12: 368, March 1953.

DOCUMENTATION NOTE

Tables 1, 2, 3, and 4 in more detailed form have been deposited as document number 8419 with the ADI Auxiliary Publications Project, Photoduplication Service, Library of Congress, Washington 25, D.C. A copy may be secured by citing the document number and by remitting \$1.25 for photoprints, or \$1.25 for 35 mm. microfilm. Advance payment is required. Make check or money order payable to: Chief, Photoduplication Service, Library of Congress.

Conference Calendar

August 12-17, 1965: American Podiatry Association (annual meeting), Chase Plaza Hotel, St. Louis, Mo.

October 17-20, 1965: Medical Group Management, Hilton Hotel, Portland, Oreg.

October 18-22, 1965: American Public Health Association, Conrad Hilton Hotel, Chicago, Ill. George Schless, 59 East 54th Street, New York, N.Y., 10022.

October 20-21, 1965: Industrial Hygiene Foundation, Mellon Institute, Pittsburgh, Pa. Dr. Robert T. P. de Treville, Managing Director, Industrial Hygiene Foundation, 4400 Fifth Avenue, Pittsburgh, Pa., 15213. November 14–19, 1965: Animal Care Panel (annual meeting), Sheraton Hotel, Philadelphia, Pa. Joseph J. Garvey, Executive Secretary, 4 East Clinton Street, Joliet, Ill., 60434.

December 8-10, 1965: National Symposium on Coccidioidomycosis: Del E. Webb TowneHouse, Phoenix, Ariz. Arizona Tuberculosis and Health Association, Inc., 733 West McDowell Road, Phoenix, Ariz., 85007.

Announcements for publication should be forwarded to Public Health Reports 6 months in advance of meeting.