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Abstract 

The incidence of type 1 diabetes (T1D) has increased substantially in Finland, but the exact 

trigger for the onset of T1D is still unknown. We know that use of amoxicillin and anti-cariogenic 

fluoride tablets is a common practice for children in Finland. It seems that beta-cell destruction is 
initiated by modification of the proinsulin by combined effects of fluoride (F2) and amoxicillin. 

Amoxicillin especially when used together with clavulanic acid results in an acid environment 

around the beta-cells that promotes the conversion of F2 to hydrogen fluoride (HF). Unlike F2, 
HF can diffuse easily into the beta-cell cytosol. Because the cytosol has a neutral pH, virtually all 

HF reverts to F2 in the cytosol and F2 cannot easily diffuse out of the cell. Exposure to excess F2 

promotes proinsulin covalent dimerization and simultaneously hyperexpression of MHC Class I 
molecules. Proinsulin dimers then migrate to the cell membrane with MHC class I molecules, 

accumulate at the beta-cell membrane and produces a powerful immunogenic stimulus for the 

cytotoxic T-cells. Production of cytotoxic cytokines from the infiltrating T-cells initiates the 
destruction of beta-cells. In Finnish children, this might be helped along by a higher beta-cell 

activity and by a reactive thymus-dependent immune system induced by higher levels of thyroid 

hormones and calcitonin respectively. After repeated similar attacks, more and more effector T-
cells are raised and more and more beta-cells are destroyed, and clinical diabetes occurs. 

© 2013 GESDAV 

 
INTRODUCTION 

Type 1 diabetes (T1D) is an autoimmune disease 

wherein insulin-producing pancreatic beta (β)-cells are 

attacked and destroyed by T lymphocytes [1]. During 

the natural history of T1D, T-cell activity develops 

against more and more β-cell epitopes, which is often 

referred to as antigen spreading [2]. The presence of 

both effector T-cell reactions and autoantibodies can be 

detected, however the β-cell destruction is mediated 

largely by T-lymphocytes [2, 3]. Resting β-cells display 

less antigenicity and are less sensitive to immune 

destruction. Growing evidence suggests that the 

functional state of the β-cells plays a role in the 

pathogenesis of T1D [4, 5]. They might be especially 

sensitive to autoimmune diseases due to the fact that 

these cells open themselves up during the insulin 

secretion. It might well be imagined that not every 

single molecule out of several billions produced is 

totally correct, and therefore could elicit an antigenic 

reaction. The possible mechanisms behind the β-cell 

sensitivity as a function of their activity are: increased 

susceptibility to the toxicity of diabetogenic agents and 

increased antigen expression in β-cells with high 

activity which could activate the destruction caused by 

the immune system [6].  

 

AUTOANTIGEN PRESENTATION TO CYTO-

TOXIC T LYMPHOCYTES 

The destruction of the β-cells is mediated by cellular 

immune responses [7]. But, the detailed mechanisms of 

how the autoimmune response is initiated remain 

unclear. The major cell type that destroys β-cells in 

T1D is the CD8+ cytotoxic T lymphocyte (CTL) that 

directly recognizes peptide antigens presented by 

class I major histocompatibility complex (MHC) 

proteins on the surface of β-cells [8]. T lymphocytes 

have the unique property of recognizing and 

responding only to peptide antigens that are present on 

the surfaces of other cells. Although the expression 

levels vary, all nucleated cells within the body use 

class I MHC molecules to present antigen to CTLs. 

Such antigens are derived from peptides produced by 

intracellular degradation of target molecules and, by 

this way, a cell can present to the immune system any 

marker indicative of abnormal function [9]. In contrast, 

CD4+ T cells recognize antigen only in the context of 

class II MHC, which is normally expressed exclusively 

on antigen-presenting cells (APCs). In this case, the 

antigen is usually derived from the breakdown of 

proteins that the APCs have endocytosed from their 

environment [9]. Hyperexpression of MHC class I 

molecules by β-cells is a feature unique to T1D 
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whereas increased expression of MHC II molecules 

have not been seen consistently on β-cells [10]. The 

hyperexpression of class I MHC by islet endocrine cells 

in human T1D appears to precede insulitis [10-13] and 

insulitis is never observed in the absence of class I 

MHC hyperexpression [14]. Hyperexpression of MHC 

class I molecules on islet cells renders them more 

susceptible to CTL killing as a result of the increased 

surface density of autoantigenic peptide with MHC 

molecules [14]. It has been argued that β-cells might, 

themselves, represent the source of the signal that 

results in the hyperexpression of class I MHC antigens 

within islets [11, 15]. Some class I MHC-binding 

peptides may be generated by proteolytic enzymes 

resident in the endoplasmic reticulum (ER) and MHC 

class I binding to self-peptides occurs within the 

endoplasmic reticulum [16]. For example, peptides 

from secretory proteins with hydrophobic signal 

sequences are often found associated with class I MHC 

molecules. These proteins bind directly to class I MHC 

complex in the ER [16]. Class II MHC antigens have 

been shown to be aberrantly expressed in the pancreas 

in T1D [10-12, 17] and it occurs after hyperexpression 

of MHC class I within a given islet [12], but the signal 

that initiates the aberrant class II MHC expression in  

β-cells has yet to be determined [18].  

 

PROINSULIN DIMER AS AUTOANTIGEN 

We thought that post-translational modifications of  

β-cell peptides could contribute to the interaction 

between peptides, MHC molecules and the autoreactive 

T-cells. In this respect, a conformationally altered form 

of native proinsulin may play such a role in the T1D 

process [19-22]. It was suggested that disulfide cross-

linked dimers of proinsulin could provide the 

autoantigenic stimulus, since their abnormal tertiary 

structure would not be recognized as self by the 

immune system [23]. Proinsulin is present in a soluble 

aggregate state in the ER but may form dimers due to 

abnormalities of microenvironment induced by toxic 

compounds. Exposure of proinsulin monomers to 

halogens such as iodine and chlorine was reported to 

result in disulfide cross-linked dimers [24, 25]. 

Dimerization, being post-translational and not under 

direct enzymatic control, would then result in 

autoantigenity by virtue of the altered tertiary structure. 

Dimeric proinsulin would then migrate to pancreatic  

β-cell membranes together with MHC class I molecules 

to be presented to cytotoxic T lymphocytes. This 

abnormal dimer would not be recognized as self by the 

immune system, triggering a selective destruction of 

pancreatic β-cells, resulting in T1D [26].  

T1D is a complicated disease that is difficult to 

understand; the question of what causes T1D is still not 

fully answered [2]. Environmental factors, such as diet, 

and toxic compounds may potentially trigger the onset 

of autoimmune diabetes [9]. It is in good accordance 

with the partially un-inherited nature of T1D that the 

incidence of the disease during the last 3-4 decades has 

increased substantially in Finland; T1D is seen in up to 

2% of all individuals during their life-time [2]. This is 

an unusually high incidence for a potentially deadly 

disease. However, for the vast majority of T1D patients 

no direct β-cell toxic compound has been identified yet. 

In the present study, we present a hypothesis in which 

multiple pathogenetic factors related to fluoride, 

amoxicillin, calcitonin, thyroid hormones, β-cell 

activity and T-cells, act in concert for the development 

of T1D. 

 

FLUORIDE TOXICITY 

Fluoride (F2) is another halogen like iodine and 

chlorine and it is used as anti-cariogenic in drinking 

water, oral tablets and dentifrices [27]. However, 

chronic exposure to high dose F2 can result in dental 

fluorosis [28]. Fluorosis is found in cities with a 

fluoridated water supply and higher incidence of T1D 

was reported in a number of these countries [29, 30]. 

However, in Finland children have fluorosis despite the 

absence of fluoridated water supply [30]. Use of 

fluoride tablets is the only significant contributory 

factor for fluorosis in Finland [30] and fluorosis is 

more common among children who take amoxicillin 

during the first 2 years of life [31]. It seems that dental 

ameloblasts are exposed to an acid environment with 

the use of amoxicillin [27]. The low extracellular pH 

surrounding the maturation stage ameloblasts promotes 

the conversion of F2 to hydrogen fluoride (HF). Unlike 

F2, HF can diffuse easily into the cell cytosol. Because 

the cytosol has a neutral pH, virtually all HF reverts to 

F2 in cytosol and F2 cannot easily diffuse out of the 

cell. Over the course of months, the F2 concentration 

within an ameloblast could rise to many times that 

present in the extracellular matrix. Excess F2 can then 

compromise the protein synthesis [32, 33], disrupt the 

export of secretory granules from the ER, and lead to 

the formation of autophagosomes in cytosol thus 

generating the clinical manifestations of dental 

fluorosis [34]. Fluoride was also reported to alter the 

activity and morphology of pancreatic cells [35-38], 

resulting in the decrease in insulin secretion and 

hyperglycemia, thus indicating the diabetogenic effect 

of fluoride [36].  

 

CONTRIBUTION OF THYROID HORMONES 

AND CALCITONIN 

Increased linear growth, as measured by attained 

childhood height, is associated with an increased risk 

for T1D, especially at young ages [39-41]. Rapid 
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growth observed in infants and young children [42] is 

partly a continuation of the fetal growth under the 

effect of thyroid hormones [43]. Growth becomes 

thyroid hormone dependent immediately after birth 

[44], and excessive thyroid hormone in this period was 

reported to enhance body height in humans [45]. 

Growth velocity in this period is different between 

populations [46, 47], and Finnish infants showed 

significantly higher growth rate and higher thyroid 

hormone serum levels than all other ethnic groups [48], 

but the differences do not seem to correlate with 

thyrotropin levels [49, 50]. The control of the thyroid 

hormone secretion in this period was suggested to come 

from parafollicular (C) cells which were reported to 

stimulate the follicular cells in a paracrine way [51], 

and calcitonin was suggested to be responsible for the 

population differences in thyroid physiology [52]. 

Therefore, thyroid hormone dependent rapid growth 

observed after birth is controlled by calcitonin; and 

higher thyroid hormone levels and higher growth rate 

in the early postnatal period seem to result from 

elevated calcitonin levels in this period [53].  

Thyroid hormones increase the rate of absorption of 

carbohydrate from the gastrointestinal tract and they 

also accelerate the degradation of insulin [54]. With 

elevated levels of thyroid hormones, therefore, the 

blood glucose level rises rapidly after a carbohydrate 

meal, sometimes exceeding the renal threshold [55]. 

Higher thyroid hormone levels and higher growth 

velocity observed in Finnish children may thus result in 

greater insulin secretion which may increase demands 

on the beta cells and make the beta cells vulnerable to 

autoimmune attack. This view supports the overload 

hypothesis for the onset of diabetes in Finland. 

High levels of calcitonin receptor are expressed by 

normal human T lymphocytes and binding of the 

receptor with calcitonin leads to proliferation and 

cytokine production in lymphocytes [56-59]. Serum 

calcitonin concentration is significantly elevated in the 

patients with T1D indicating a role of calcitonin in the 

pathogenesis of diabetes [60-65]. The link between 

calcitonin and T1D may involve increased numbers of 

T-cells and higher levels of cytokines secreted by 

lymphocytes in the pancreatic islets [66].  

Previous considerations has led us to suggest that 

childhood rapid growth in Finland trigger the 

autoimmunity under the combined effect of thyroid 

hormone and calcitonin by inducing higher insulin 

production from the pancreas, which may make the  

β-cell more active and more visible to the immune 

system and by inducing proliferation and cytokine 

production in T-cells already performing autoimmune 

attack in the islets. 

 

A SCENARIO FOR THE DEVELOPMENT OF 

TYPE 1 DIABETES IN FINNISH CHILDREN 

We suggest that β-cell destruction in T1D progresses 

through a number of stages:  

-Stage 1 is initiated by modification of the proinsulin 

(dimer formation) by combined effects of fluoride and 

amoxicillin. Amoxicillin especially when used together 

with clavulanic acid results in an acid environment 

around the β-cells that can dip below pH 6. The low 

extracellular pH surrounding the β-cells promotes the 

conversion of F2 to HF. Concentration of HF increases 

as the pH falls. After the pH of the extracellular matrix 

gets lower than that of the cell cytoplasm, an 

intracellular-extracellular pH gradient is maintained 

that continuously drives HF into the cell. Unlike F2, 

HF can diffuse easily into the β-cell cytosol. Because 

the cytosol has a neutral pH, virtually all HF reverts to 

F2 and F2 cannot easily diffuse out of the cell. Over the 

course of months, the F2 concentration within a β-cell 

rises to many times that present in the extracellular 

matrix. Exposure to excess F2 promotes disulfide bond 

instability thereby allowing the formation of novel 

disulfide cross-links between two proinsulin molecules 

in the ER, thus leading proinsulin dimers and 

simultaneously hyperexpression of MHC class I 

molecules. The abnormal products of proinsulin then 

migrate to the cell membrane with MHC class I 

molecules, and immunoreactivity due to the changed 

conformation of proinsulin molecules initiates a 

destructive autoimmune process against the islets. 

Shedding dimeric proinsulin molecules from beta cells 

in combination with hyperexpression of MHC 

molecules is a powerful immunogenic stimulus for the 

cytotoxic T-cells.  

-Stage 2 commences with infiltration of the islets by 

the activated T-cells. Production of cytokines from the 

infiltrating cells induces further upregulation of MHC 

molecules in β-cells. The final stage encompasses 

autoimmune-mediated destruction of the β-cells by the 

targeted delivery of cytotoxic cytokines and other 

mediators. In Finnish children, this might be helped 

along by high β-cell activity and by a reactive thymus-

dependent immune system induced by thyroid 

hormones and calcitonin respectively. Once the islets 

have become infiltrated and highly populated with T-

cells and macrophages, they communicate via antigen 

presentation and can, in turn, activate each other via 

cytokines and direct cell communication through 

surface receptors. With such a high population of 

immune cells centered in one distinct area, activation 

signals can travel fast, initiating a destructive cascade 

easily. CTLs (CD8+) can directly kill β-cells, whereas 

CD4+ effector T-cells activated possibly by β-cells 

initiates the activation of B lymphocytes, thus 

prompting autoantibody production. At this stage, 

various amounts of β-cell antibodies are present, but 
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the process may still be reversible. However, after 

repeated similar attacks more and more effector T-cells 

are raised and more and more β-cells are destroyed, and 

a point of no return is passed. The insulitis process 

perpetuates by itself and clinical diabetes will occur. 

Consequently, Finnish children will have healthy teeth 

at the expense of T1D. 

 

FUTURE CONSIDERATIONS 

T1D seems to develop if all the pathogenetic factors 

related to fluoride, amoxicillin, thyroid hormones, 

calcitonin, beta-cell activity and T-cells act in concert 

to some degree, and that if any of the factors are 

neutralized, inhibited, or acted against, T1D would not 

occur. The fluoride compounds in drinking water are 

completely absorbed from the gastrointestinal tract [67] 

and while 60% of the absorbed fluoride is retained in 

adults, this level rises to 80-90% in infants [35]. As a 

result, drinking water should also be considered as the 

potential source of fluoride that causes T1D in children. 

In addition, dental products are other common sources 

of overexposures today, particularly dentifrices, 

because of their relatively high fluoride concentrations, 

pleasant flavors, and their presence in non-secure 

locations in most homes [68]. Therefore, it should be 

kept in mind that ingestion of a little standard 

fluoridated dentifrice by a child delivers enough 

fluoride to reach the toxic dose. 
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