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Abstract
Background

Fluoride (F) is a naturally exists in nature but several studies have indicated it as an environ-
mental toxicant to all leaving beings. Human F exposure has increased over the years since
this ion has been used by industry on foods, beverages, toothpastes and on water supply.
Although F is safe at optimal concentrations in water supply, human exposure to high levels
could trigger neurofunctional deficits.

Materials and methods

In this study, human glial-like (U87) and neuronal-like (IMR-32) cells lineages were used to
access F toxicity and CNS cell sensibility on both cell facing the same protocol. Cells were
exposed to F over 3, 5 and 10 days on two different F concentrations. Fluoride exposed
cells were evaluated by standard toxicity assays to cell viability, apoptosis, necrosis and
general cell metabolism. Oxidative stress parameters were evaluated by ATP and ROS lev-
els, lipid peroxidation, GSH/GSSG ratio and comet assay.

Results

No changes were observed in IMR-32 at any given time while after 10 days of exposure to
0.22ug/mL, U87 glial-like cells showed signs of toxicity such as decreased cell viability by
necrosis while general cell metabolism was increased. Oxidative stress parameters were
next evaluated only on U87 glial-like cells after 10 days of exposure. F induced a decrease
on ATP levels while no changes were observed on reactive oxygen species and lipid peroxi-
dation. GSH/GSSG ratio was decreased followed by DNA damage both on 0.22ug/mL F.

Conclusions

Our results suggest an important differential behavior of the distinct types of cells exposed
to the different fluoride concentrations, pointing that the U87 glial-like cells as more suscepti-
ble to damage triggered by this ion.
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Introduction

Fluoride (F) has been widely used worldwide for dental caries prevention since the 50’s. It
occurs naturally in some regions on the soil and water, but can also be ingested from fluori-
dated public water supply, toothpastes, food, supplements and beverages [1].

After ingestion, F absorption is close to 100% in the absence of di- and trivalent cations that
form insoluble compounds with F. It is well known that F absorption occurs mainly via gastro-
intestinal tract, with 25% being absorbed as hydrofluoric acid (HF) on stomach in an inverse
relation of pH-dependent mechanism [2]. The remainder F is absorbed by the intestine, after
which it crosses cellular space in its ionic form, in a no pH-dependent mechanism [2]. Once
absorbed by the body, F- is carried out by the bloodstream reaching various organs and tissues
[3], and 50% of the amount is stored in calcified tissues as bone and teeth. A small percentage
is stored in soft tissues and some studies have suggested that F is able to cross the blood-brain
barrier and accumulate in various central nervous system (CNS) regions, such as hypothala-
mus, cerebellum, basal ganglia, midbrain, cortex and hippo-campus [4, 5].

The most known side-effect of excessive F intake is dental/skeletal fluorosis [6]. However, some
studies have linked high levels of F intake to neurological disorders, such as decreased learning and
memory ability and intelligence quotient [7-11]. Moreover, studies using animal models suggest
that F exposure may cause several other neurological changes, such as decreased locomotor capacity,
emotional changes and decreased reflex response [8-12]. F also impairs enteric nervous system as
previously reported [13, 14]. In addition, it has been shown that chronic exposure to F can cause
changes in synaptic plasticity, mainly due to changes in neurotransmitters release, such as GABA,
serotonin and glutamate [4, 15]. It is believed that these CNS changes may also be closely linked to
increased formation of reactive oxygen species (ROS), DNA damage and cell death [16-18]. How-
ever, little is known about the effects of F effect on each type of cell of the CNS.

Composing the CNS, glial cells are mainly represented by oligodendrocytes, microglia and
astrocytes, making up 90% of brain tissue in some areas [18, 19]. They are extremely important
for the normal functioning of the CNS, regulating tissue homeostasis, ensuring the mainte-
nance and survival of neurons. Additionally, these cells have the ability to release substances
involved in the neuron cross-talk [19, 20]. F toxicity targets glial cells, interfering with gluta-
mate transport and protein synthesis process [21]. Moreover, F exposure may also lead to sev-
eral morphological changes on glial cells, such as cellular activation (called gliosis) and
increased intracellular vacuoles [22]. While in one hand we have glial cells supporting neurons
and others cerebral structures, in the other, neurons play a pivotal role in CNS features, includ-
ing action potentiation, synapse transmission and neuroplasticity [23]. Along with glial cells,
neurons perform memory storage and acquisition, movement commands, sensorial abilities
and others [24, 25], being also subject to deleterious effects of F [26].

It is important to note that previous studies on the effect of F over the CNS models
employed do not mimic human exposure, since the doses employed are far above those that
can be achieved under usual chronic levels of exposure to this ion. In addition, it is important
to consider that F level in plasma could be higher than the expected, if we consider that the
intake of this element is influenced by a combination of different sources besides fluoridated
water, such as toothpaste, food, supplements and beverages. In this way we mimic a high and
long-term exposure to show whether F could be harmful to human-like CNS cells. Thus, in the
present work we evaluated the effect of prolonged exposure of human glial-like cell line-age
(U87 cells) and neuronal-like cell lineage (IMR-32) to F concentrations close to or higher than
those found in areas of endemic fluorosis over the cell survival, metabolism, oxidative bio-
chemistry and DNA integrity, in order to analyze the patters of response of the two different
cell types to the same F dosage ranges.
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Materials and methods
Reagents

Dulbecco’s modified Eagle’s medium (DMEM) was obtained from Invitrogen (Carlsbad, CA).
Sodium Fluoride (NaF; Sigma Chemical, USA, purity >99,9%), 3-(4,5-dimethylthiazol-2-y1)-
2,5-diphenyl-tetrazolium bromide (MTT), Trypan Blue, 4',6-diamidino-2-phenylindole
(DAPI) nuclear dye, TBARS assay kit and Bradford were purchased from Sigma-Aldrich.
Mitochondrial Tox-Glo assay, Apotox-Glo triplex assay, ROS-Glo H,O, assay and GSH/
GSSG-Glo assay were purchased from Promega.

Cell culture and F exposure

Neuronal-like cell IMR-32 and glial-like cell U87 (ATCC) were cultured in DMEM supple-
mented with 10% of fetal bovine serum (FBS), penicillin (50 u/mL), streptomycin (25 pg/mL),
gentamycin (25 ug/mL) and amphotericin b (2.5 pg/mL) in a controlled 5% CO, and 37°C.
Cells were plated onto 24-wells plate (10000 cells/well) and 96-well plates (1000 cells/well).
Afterwards, cells were treated with sodium fluoride-containing medium with concentration of
F equivalent to 0.095 pg/mL F and 0.22 pg/mL F, for 3, 5 or 10 days. Exposure test medium
plus F was changed every two days before analyses, according to the methodological frame-
work (Fig 1), except for cells exposed for 3 days. These F concentrations were selected to simu-
late plasma F levels expected to be found in people living in areas of endemic fluorosis [27, 28].

Viability, apoptosis and necrosis assay

Cell viability was performed using trypan blue exclusion assay. After exposure, F-containing
medium was withdrawn, cells washed twice with phosphate-buffered saline (PBS) and
detached with Trypsin/EDTA. Cell samples were centrifuged for 3 min at 448 g. After resus-
pended with fresh medium, cells were counted and classified as viable and non-viable cells.
The percentage of viable cells (VC) was assessed as follows:

VC(%) = 100 viablecells
totalcells

We also checked cell viability by Apotox-triplex assay (Promega) as well as apoptosis and
necrosis according to manufacturer’s instruction. In brief, after cell exposure, 20ul of Viability/
Cytotoxicity reagent containing both GF-AFC and bis-AAF-R110 substrate were added to all
wells and mixed by orbital shaking (28g for 30 seconds). Samples were incubated at 37°C for
30 minutes. Fluorescence was measured using a Glomax Multi Detection System (Promega)
set in two wavelengths, 400Ex/505Em (Viability) and 485Ex/520Em (Cytotoxicity—as a bio-
marker of necrosis). In the same wells, we added 100yl of caspase-Glo 3/7 reagent, mixed by
orbital shaking (28g for 30 seconds) and incubate at room temperature for 30 minutes. Lumi-
nescence was read using a Glomax Multi Detection System (Promega).

General cell metabolism status and ATP levels measure

The MTT assay was performed to evaluate cell metabolism. After exposure, cells were washed
with PBS and MTT solution was added (100puL; 5 mg/mL) followed by incubation for 2.5 h in
controlled 5% CO, and 37°C. After that, MTT solution was removed and 100 pL of dimethyl-
sulfoxide (DMSO) were added to dilute formazan crystals. Samples were read in the Glomax
Multi Detection System (Promega) at 570 nm. Cell metabolism was indicated as absorbance/
percentage of viable cells. Cellular ATP levels were measured by Mitochondrial Tox-Glo assay
by Promega, according to manufacturer’s instruction. After exposure, assay plate was
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Fig 1. Methodological framework of cell culture and analyses. 1) U87 and IMR-32 cells were maintained in DMEM+10%FBS. Cells were exposed for 3, 5 or 10 days to
a solution containing different F concentrations. After the exposure period, the following analyses were performed: 2) Viability assay; 3) General cell metabolism by
MTT reduction; 4) Apoptosis/Necrosis; 5) ATP levels; 6) Cell morphology; 7) Oxidative Biochemistry assays by measuring Reactive oxygen species, 8) Oxidative
Biochemistry assays by measuring GSH/GSSG ratio, 9) Oxidative Biochemistry assays by measuring Lipid Peroxidation; and 10) Comet assay.

https://doi.org/10.1371/journal.pone.0251200.g001

equilibrated to room temperature (

10 minutes) and 100 pl of ATP detection reagent was

added to each well. Samples were mixed by orbital shaking (55g) for 5 minutes. Luminescence
was read in a Glomax Multi Detection System (Promega).

Cell morphology analyses

Morphological changes were evaluated in the cultured cells after exposure. Cells were fixed
with 4% paraformaldehyde (PFA) for 10min followed by 2x washing (5 min) with PBS plus
glycine to inactivate PFA. Cell were washed with PBS and stained with 10% Giemsa for 10
min. The cellular morphology was observed under inverted phase contrast microscope and
photomicrography were analyzed by Image].
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ROS and GSH/GSSG levels

The H,0, levels were measured by ROS-Glo H,O, assay by Promega according to manufac-
turer’s instructions. In brief, before six hours after the end of F exposure, cells were treated
with H,O, substrate (25uM). After that, ROS-Glo detection solution was added to each well
and samples were incubated for 20min at room temperature. Luminescence was read in a Glo-
max Multi Detection System (Promega). GSH/GSSG levels were measured by GSH/GSSG-Glo
by Promega according to manufacturer’s instruction. The F-containing medium was with-
drawal and replaced by GSH or GSSG lysis reagent. Samples were mixed by orbital shaking at
55g for 5 min. Then 50pL of luciferin were added in each well and incubated for 30 min at RT.
After that, 100pL of luciferin detection reagent were added, samples were equilibrated at RT
for 15min and luminescence was read in a Glomax Multi Detection System.

Lipid peroxidation

Lipid peroxidation was assessed by following the formation of thiobarbituric acid-reactive sub-
stances (TBARS). In brief, the reagents were added in each well and incubated for 2h at 50°C.
TBAR produced a colored solution that could be read at 535nm. Sample absorbencies were

compared with MDA standard curve and corrected by protein. The concentration of total pro-
tein was measured by Bradford method [29].

Comet assay

DNA fragmentation was analyzed by the comet assay [30]. After exposure, cells were washed
three times with PBS, detached with trypsin/EDTA and centrifuged for 10min at 112 g. The
pellet was resuspended in 500pL of fresh medium. Twenty microliters were added to 120uL of
0.5% low-melting point agarose and transferred onto an agarose pre-coated slide. The slides
were incubated at 4°C for 20 min, followed by incubation in lysis solution (1% Triton X-100,
10% DMSO, 2.5 M NaCl, 100 mM EDTA, 10 mM Tris-HCI, pH 10) for 12 h. Electrophoresis
was carried out with electrophoresis buffer (300mM NaOH, 1mM EDTA, pH 13) for 20min
following the setup: 300mA and 30V. After that, slides were washed three times with neutraliz-
ing solution (19.5 mM Tris-HCI, pH 7.5) for 5 min each. Cells were stained by DAPI fluores-
cent (15 uL; 10 pg/ml). One hundred randomly chosen cells were analyzed per sample and the
plugin OpenComet at Image] was used to show the percentage of DNA in head (non-frag-
mented) or in tail (fragmented).

Statistical analyses

All experiments were performed in triplicate (n = 3) and data were shown as

median * standard deviation. The comparisons among treatments were performed using one-
way ANOVA followed by Tukey test (p<0.05). The assumptions of data normality and homo-
geneity of variances were previously verified by Shapiro-Wilk test.

Results
The fluoride induced toxicity on glial cells but not on neuronal cells

Neuronal (IMR-32) and glial-like cells (U87) were exposed in a temporal manner (3,5 and 10
days) to two different concentrations (0.095 pg/mL and 0.22 pg/mL) to have their sensibility to
F accessed. None of the expositions caused cell death in IMR-32 cell line (Fig 2A). However,
U87 cell line showed a decrease in viability when exposed to 0.22pg/mL F (66.12 + 9.71%) after
10 days, in comparison to control (91.97 + 5.31%) (Fig 2B). We further have analyzed
induced-cell death by apoptosis or necrosis in U-87 cell line. Our results have shown a non-

PLOS ONE | https://doi.org/10.1371/journal.pone.0251200 June 17, 2021 5/16


https://doi.org/10.1371/journal.pone.0251200

PLOS ONE Fluoride exposure impacts on neuronal- and glial-like cells

A B
120+ Il 3d 120+
3 5d I 3d
I 10d —— 3 5d
100 - - _ 100 = B 10d
e o =+ =
é 80 é 80 =5
2 2z
g 60+ g 60-]
> >
O 404 o 404
Q Q
204 204
0- - —T— —T— 0- T T T
0 0.095 0.22 0 0.095 0.22
F (ug/mL) F (ug/mL)
150- 200-

=
]
E
-
g %: _ 3 1501
2 2
S 2 100 S
2% 2
2 S ==
— 100
a8 2
o § &
[
32 2
&8 50 RS
S £ © 50
S |
5 g
g
Q
o . = o .
0 0.095 0.095
F (ng/mL) F (ng/mL)

Fig 2. Fluoride toxicity on central nervous system human cells. Cell viability was performed on A) IMR-32 and B) U87 in different time and F concentrations. Live
and dead cells were counted after 3, 5 and 10 days of F exposure. U87 cell death apoptosis or necrosis were evaluated after 10 days of 0.22ug/mL F by C) 3/7 caspase
assay and D) membrane integrity analysis respectively. Data were expressed as mean + SD. Statistical analysis were performed by one-way ANOVA followed by
Tukey’s test. Statistical significance compared to control group were showed by * when p<0.05.

https://doi.org/10.1371/journal.pone.0251200.9002

caspase-dependent cell death (Fig 2C), while an increased cytotoxicity as a biomarker of necro-
sis was observed at 0.22ug/mL (149.8 + 25.5%) compared to control (99.71 £3.02) (Fig 2D).

In the same way, general cells metabolism status was found increased only in U87 glial cells
exposed for 10 days to the highest F concentration (0.22 pg/mL, 171.15 + 27.5% vs control,
109.01 + 6.63%) while no changes were observed on IMR-32 cells (Fig 3A and 3B). ATP levels
were measured after 10 days of F exposure and our results showed no changes on IMR-32 cells
(Fig 3C). On U87 glial cells, both 0.019pug/mL F (77.9 + 2.47%) and 0.22 pg/mL F
(75.31 £ 1.98%) decreased ATP levels when compared to control (99.76 £0.4%) (Fig 3D).

No changes related to nuclei area, nuclear perimeter and rounded index were observed in
the morphometric analyses, in none of the cell lines (Figs 4A-4C and 5A-5C respectively). On
the qualitative analysis of cell density and morphology (Figs 4D-41 and 5D-5I), a cytopathic
effect was observed only in U87 glial cells in a concentration-dependent manner. Arrows show
the decrease in cellular density and narrowing of cytoplasmic projections in U87 glial cells (Fig
4D-41). As no significant changes on neuronal cells were observed, we evaluated stress param-
eters only in U87 glial cells after 10 days of exposure.
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Higher concentrations of fluoride reduce antioxidant parameter and cause
damage to DNA integrity of glial cells

The GSH/GSSG levels were decreased after 0.22 ug/mL (93.54 + 16.02uM vs control,

182.19 £ 6.16uM) (Fig 6A). However, no changes in ROS levels nor in membrane lipid peroxi-
dation were observed (Fig 6B and 6C). Our results pointed to an increase in DNA fragmenta-
tion (percentage of DNA present in the comet’s tail) when cells were exposed to 0.22 ug/mL
(29.16 £ 13.99% vs control, 14.06 + 5.3%) (Fig 7).

Discussion

Our findings bring for the first-time evidences to the literature of the different behavior of neu-
ronal (IMR-32) and glial-like cells (U87) facing the same range of F concentration during a
short- and long-term exposures. We observed that ono major changes were observed on neu-
ronal cells (IMR-32) exposed to F. However, under the same protocol, F exposure leads to
decreased percentage of living cells, changes on spatial organization, increased general metab-
olism status, ATP and GSH/GSSG decreased levels as well as damage to the genetic material of
U87 glial-like cells lineage when exposed to concentrations that are usually found on plasma of
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humans that live live in endemic areas of fluorosis, presenting high natura levels of F in the
drinking water [27, 28].

To demonstrate the F-induced changes on CNS cells, we chose to use two human cell lines,
a neuronal-like cell (IMR-32) and a glial-like cell (U87). Knowing that human F exposure hap-
pens constantly over long periods of life through fluoridated water, toothpaste ingestion and
food consumption, we aimed to show how F leads to CNS cells toxicity over time. Thus, we
first per-formed a time response curve to assess the IMR-32 and U87 glial cell F-sensitivity.
Cells were exposed for 3, 5 and 10 days to solutions containing 0.095 ug/mL or 0.22 ug/mL of
F and then were accessed by standard toxicity tests on cell culture, such as cell viability, general
metabolism and cell morphology.

The literature about F levels in human plasma present a wide range of F concentrations,
thus, several aspects must be considered, such as age, health status, methodology for F levels
determination and diet. For instance, exposure of mice to 50 ug/mL of F led to plasma mean
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values of 0.14ug/mL [27]. When it comes to humans, Singer et al. [28] pointed that F concen-
trations on water supply ranging from 0.15 pg/mL to 5.4 pg/mL, led to a mean plasma concen-
tration range from 0.14pg/mL to 0.26pg/mL, respectively. Moreover, Sener et al. [31] showed
that mean plasma F levels in adult individuals consuming optimally fluoridated water was
0.017ug/mL and, as reported by Li et al. [32], individuals living in a region with high F levels in
drinking water (5.03 pg/mL), presented plasma concentration of 0.106 pg/mL, while Ahmed
etal. [33], showed plasma levels of 0.6ug/mL in people living in endemic regions. As men-
tioned above, dealing with F intake and consequent distribution requires attention to other
important issues, as for example, other F sources and renal function efficiency. This is useful to
illustrate that plasma concentration of F may suffers fluctuations due to several conditions,
such as the intake amount and health conditions, highlighting the translational appeal of our
study design, especially for those people who live in high F exposure areas.
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Fig 6. Oxidative stress parameters of fluoride exposure on U87 cells. A) GSH/GSSG ratio, B) Reactive oxygen species (ROS) and B) Lipid
peroxidation (TBARS) were evaluated after 10 days of 0.095 and 0.22ug/mL F expo-sure. Data were expressed as mean + SD. Statistical
analysis were performed by one-way ANOVA followed by Tukey. Statistical significance compared to control group was showed by *
whenever p<0.05.

https://doi.org/10.1371/journal.pone.0251200.9006

Interestingly, no major changes were observed in IMR-32 cell at any of the exposure peri-
ods, suggesting that those concentrations used in the present work may not be harmful to this
neuronal-like cell. However, when the same parameters were accessed in glial-like cells, we
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Fig 7. DNA fragmentation of U87 glial cells after 10 days of 0.095 and 0.22pug/mL F exposure was analyzed by comet assay. Data were showed as % of
DNA on head and tail and expressed as mean + SD. Statistical analysis were performed by one-way ANOVA followed by Tukey. Statistical significance
compared to control group was showed by * whenever p<0.05.

https://doi.org/10.1371/journal.pone.0251200.9007
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have observed a higher sensitivity of U87 glial-cells to F exposure, as demonstrated by the
decreased cell viability and increased general cell metabolism. As no 3/7-caspase was activated,
but an increased cytotoxicity was showed by loss of cellular membrane integrity, we suggest
that F exposure induces U87 glial cells to primary necrosis [7, 34]. In vitro studies about F tox-
icity performed on CNS cells has already been demonstrated in different in vitro neuronal and
glial/astrocyte culture models from primary origin or transformed cells line. However, it is
important to note that F concentration used were generally very high and did not represent
the reality of exposure of humans. Most studies have reported a cytotoxicity response approxi-
mately at 19ug/mL F a level that is far above that is found in the interstitial fluid of humans
even in areas of endemic fluorosis [16, 21, 35-40].

When comparing the F-induced toxicity on neurons and glial cells, it is important to high-
light that most studies have used neurons and only two have investigate de glial cells behavior
after F exposure [21, 36]. The effect of F on neuronal cell viability is inconsistent across the
studies with doses ranging from 18.09 pg/mL to 36.18 pg/mL while glia/astrocytes seems to
shown decreased cell viability above 19 pg/mL. As our study is the first one to compare both
types of cells facing the same parameters we may suggest that at those conditions presented
here, U87 glial cells may respond worse to F toxicity than IMR-32 cells.

To access the F influence in cell metabolic physiology, we evaluated two parameters: the
reduction of MTT by mitochondria and cytoplasmic NADPH—as an indicative of general cell
metabolism status [23] and ATP synthesis [41, 42]. It is important to note that MTT method
was used in this work indicate the metabolic and redox potential of U87 glial cells, and not a
direct cell number or proliferation estimation (see Rai et al. [23]). Thus, after exposure to
0.22pg/mL for 10 days, U87 glial cells showed a higher general cell metabolism or redox status
when compared to control group, indicating possibly a protective mechanism in order to
maintain the normal cell physiology under F exposure. On the other hand, ATP synthesis was
decreased after 10 days of F exposure on U87 glial cells both at 0.019 and 0.22pg/mL. Several
studies have already shown that F can act as a mitochondrial toxin in both animal and cell cul-
ture models, but the full understanding of how this ion damages the mitochondrial remains
unknown [40, 43-47]. Mitochondrial changes lead to impairment on normal respiratory chain
function mediated by Na+/K+-ATPase inhibition and decreased ATP production [48-51].
Interestingly, our results have shown in accordance, a significant influence of F in mitochon-
drial mechanism observed in U87 glial cells and in vivo experiments, as a recent study reported
profound alterations in the mitochondrial protein profile of rats exposed to water containing
50 pg/mL F for 15 days [52], leading to plasma F levels close to the lowest dose evaluated in the
present study (0.095 pg/mL). In this way, we believe that glial cells could be a suitable model to
understand the F mode of action as a mitochondrial toxin, although additional studies are nec-
essary to clarify that. As no major primary changes were observed in IMR-32 cells, we contin-
ued the F toxicity investigation only using the U87 glial cells exposed to F for 10 days.

It is important to note that in the present study the cells were cultured alone, losing the
glial-neuron interaction but this first assessment on isolated cells may lead us to understand
the order of magnitude where F toxicity is expected on CNS cells. As mentioned earlier, glial
cells are not only supportive nutritional cell for neurons but have an important role mediating
neuronal communication at CNS with direct influence on neurotransmitter release and recycle
[19, 20]. Thus, changes on glial cells normal physiology may lead to important changes on the
glial-neuron crosstalk and CNS connectivity, which may be linked to CNS dysfunction over F
toxicity in vivo model and in human [7-11].

Because the metabolic evaluation has suggested an increased redox potential of U87 glial
cells under F toxicity and several studies have hypothesized that neurological damages after F
consumption may be related to oxidative stress [52-54] we, then, sought to assess whether the
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toxic effects observed in U87 glial cells would be due to oxidative-induced misbalance. Oxida-
tive stress biomarkers after 10 days of exposure were performed by measuring H,0, levels,
since it is well recognized that H,O, is the final product of other ROS and has the longest half-
life. We have also analyzed membrane lipid peroxidation, GSH/GSSG levels and DNA damage.
We did not have identified changes in ROS levels and membrane lipid peroxidation. However,
GSH/GSSG levels decreased after exposure to 0.22 ug/mL. As glutathione is an important anti-
oxidant enzyme that minimizes free radicals, it is possible that F exposure leads to a slight
increase in ROS that was buffered by GSH. In the study proposed by Aradjo et al. [52] a similar
effect of F exposure was observed on the highest dose, showing an increased energy metabo-
lism and a reduction on antioxidant enzymes, such as Superoxide dismutase (SOD), Glutathi-
one peroxidase (GPx) and Catalase (CAT). Thus, our results seem to be in accordance with
previous data from literature suggesting that the effects of F on energy cell metabolism
depends on the time of exposure and F concentration [52]. In addition, decreased GSH/GSSG
could be also a result of changes in ATP levels as glutathione synthesis occurs through two
enzymatic reactions that are ATP-dependent. Then, in situations in which there is a decrease
in ATP production, as showed by our results, it is possible that changes in the glutathione sys-
tem may occur without necessarily relation to increased ROS levels [55]. Thus, we can hypoth-
esize that the antioxidant system of U87 glial cells by GSH/GSSG conversion reduced ROS
induction by F. Another evidence of oxidative stress could be by the DNA damage of U87 glial
cells after F exposure. Our results pointed to an increase in DNA fragmentation (percentage of
DNA present in the comet’s tail) when the cells were exposed to 0.22 pg/mL. This fragmenta-
tion appears independently of apoptosis-mediated cell death (see Fig 2C), so it is important to
note that this DNA fragmentation may function as an indicator of necrosis that occurred after
days of exposure to a cytotoxic compound, corroborating the results previously shown. Recent
studies have suggested that the boundary between the different characteristics of apoptosis- or
necrosis-mediated death has been increasingly difficult to observe [7, 56, 57]. In a study per-
formed on Jukart cells it was shown that in the early stages of necrosis it was possible to
observe DNA fragmentation specifically by cutting only at the 5 ’ends. The membrane rupture
during necrosis may be able to release nucleases responsible to cause damage to the own
genetic material. However, the mechanisms underlying of this type of fragmentation are not
fully understood yet [58, 59].

Campos-Pereira et al. [60] have shown a similar effect of long-term F exposure on rat hepa-
tocytes. These authors have shown an increase on oxidative stress and DNA fragmentation
that is able to disrupt cellular homeostasis. This is in accordance with results presented in the
present study, suggesting that F exposure could also compromise CNS cells. It is important to
highlight that only the lowest F concentration evaluated in the present study (0.095 pug/mL) is
similar to levels of F observed in plasma from individuals living in endemic areas of fluorosis,
based on several studies conducted with rodents that received water containing 50 mg/mL of F
[13, 27, 54]. Despite some studies have reported levels of F in plasma as high as 0.6 ug/mL in
areas of endemic areas, the method of analysis in these studies can be questioned [33]. Thus,
the only toxic effect found in the present study that could be expected to occur in areas of
endemic fluorosis (up to 10 ug/mL F in the drinking water) is reduction in ATP production,
which is inline with a previous study conducted with rats drinking water containing 50 pg/mL
F for 15 days [52]. However, it is known that the effects of F in the organism are not only dose-
but also time-dependent [54]. Araujo et al. [52] reported profound alterations in proteins
involved in energy metabolism were found in mitochondria of rats treated with water contain-
ing 50 pg/mL F for 15 days, but when the treatment was extended to 60 days, the alterations
were much smoother, indicating an adaptation of the organism to the effects of F. Thus, addi-
tional studies should be conducted implying longer periods of treatment and also lower doses
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of F. It would be of particular interest to conduct long-term studies using F concentrations
that lead to plasma F levels similar to the ones found in humans drinking optimally fluoridated
water.

Conclusions

Our data allow us a first assessment of F toxicity on two CNS cells lineage facing the same pro-
tocol to understand the concentration where adverse effects may be expected on each isolated
cells. U87 glial-like cells seems to be more susceptible in comparison to IMR-32 neuron-like
cells. This susceptibility is observed in a dose-dependent manner, in which lower and higher
concentrations of F can impair different biological processes and cellular components, includ-
ing DNA injurie. More studies are required to investigate the behavior of both cells in the
same microenvironment, by coculture, for example, however our results give start for further
investigations and reinforce that F as an environmental pollutant must be carefully managed.

Supporting information

§1 Table. Curve time-response on IMR-32 and U87 cells for 3,5 and 10 days of F exposure
(cell viability and general cell metabolism). Further analysis to access fluoride toxicity were
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Morphometric analysis’ (nuclei area, nuclei perimeter and round index)). Oxidative stress
parameters were evaluated only on U87 glial cells after 10 days of exposure (ROS, TBARS,
GSH/GSSG, DNA damage). Results are expressed as mean and SD: Standard deviation.
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